POLITECNICO
2\ | DI TORINO

Data Science ab

Scikit-learn

ﬂ Classification Poli DB

Classification:

Given a 2D features matrix X

X.shape = (n_samples, n_features)

The task consists of assigning a class label y to each
data sample

y.shape = (n_samples)

ﬁ Classification Poli

Classifiers follow the fit/predict pattern

Example: Decision tree

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(max_depth = 10,

min_impurity decrease=0.01)

Parameters:

max_depth: maximum tree height
min_impurity decrease: split nodes only if impurity
decrease above threshold

ﬁ Classification Poli

Fit training data

clf.fit(X, y)

X is the 2D Numpy array with input features
y is the target vector

Make predictions on new data (i.e. test set)

y _test_pred = clf.predict(X_test)

v

Classification Poli DB

To choose the most appropriate machine learning

model for your data you have to evaluate its
performances

Evaluation can be performed according to a
metric (scoring function)

E.g. accuracy, precision, recall

ﬁ Classification Poli

The data that you have in a dataset is only a
sample extracted from the distribution of real
world data

Data distribution Dataset

O - O

ﬁ Classification Poli DB

If you choose the best model for your dataset, it
may not perform so well for new data

This risk is called overfitting

Data distribution Dataset

O - O

Training l T Evaluation

Model

P Classification Poli DB

To avoid overfitting evaluation must be performed
on data that is not used for training the model

Divide your dataset into training and test set to
simulate two different samples in the data distribution

Data distribution Dataset

O

v

Training Evaluation

Model

ﬁ Classification Poli

This technique is called hold-out
Training set is typically 80/907% of your data

Data distribution Dataset

Q > Test set

Training set

ﬁ Classification Poli DB

Hold-out with Scikit-learn

from sklearn.model selection import train_test split

X _train, X test, y train, y test = train test split(X, y, test size=0.2)

Default test_set size is 0.25 (25%)

Dataset Test set
X_test, y test

Training set
X_train, y_train

10

/‘ Classification Poli

Evaluation = compare the following two vectors

y test (V): the expected result (ground truth)
y test pred (¥): the prediction made by your model

Main evaluation metrics for classification:
Accuracy: 7% of correct samples

Precision(c): % of correct samples among those
predicted with class ¢

Recall(c); % of correct samples among those that
belong to class ¢ in ground truth

F1(c): harmonic mean between precision and recall

ﬁ Classification Poli

Evaluation metrics with Scikit-learn

from sklearn.metrics import accuracy_score,

precision_recall fscore_ support

acc = accuracy score(y_test, y test pred)

p, r, f1, s = precision recall fscore support(y_test, y test pred)

12

p Classification Poli DB

p, r, fl, s = precision recall fscore support(y_test, y test pred)

p, r, f1, s are 1D Numpy arrays with the scores
computed separately for each class

Example
classO class 1 class 2
P= ek et Ok «|__ many samples of class
2 are recognized, but
(= o o7 00— m.odel s not precise
with this class

13

p Classification Poli

p, r, fl, s = precision recall fscore support(y_test, y test pred)

Macro average Scores Vs Micro average Scores

Macro average f1:

macro_fl = fl.mean()

Macro average gives the same importance to all
classes, even if they are unbalanced

If a class with few elements gets a low f1, the micro-

averaged score is affected with the same weight as another

with more samples

14

ﬂ Classification Poli DB

Micro average scores

p, r, f1, s = precision recall fscore support(y_test, y test pred,
average = ‘micro’)

Micro average scores are computed by collecting all
the TP, FP, TN, FN independently of the class

micro-p = (total TP) / (total TP + total FP)

micro-r = (total TP) / (total TP + total FN)

micro—f1 = micro-p = micro-r
Classes with higher cardinality have higher impact
on these metrics

15

ﬁ Classification Poli DB

Confusion matrix

Useful tool when you want to inspect with more details
the classification results

In [1]: | from sklearn.metrics import confusion_matrix

conf_mat = confusion matrix(y_test, y test pred)

print(conf_mat)

predicted
o 1 2
actual
Out[1]:| [[45, @, 1], <« 0
[@) 43: @]J < 1
[0, 3, 42]] < 2

16

P Notebook Examples

= 3b-Scikitlearn-
Classification.ipynb

1. Classification and hold
out

p Cross-validation Poli DB

Divide your dataset into k partitions

At each iteration select a partition to be used as
test set and the others will be the training set

k=3 partitions

iteration 1 test

iteration 2 test

iteration 3 test

p Cross-validation Poli DB

At each iteration a different model is trained

After training a model compute a scoring metric
to the predictions for the test set

test

test

test

— model1l — score (e.g. accuracy)

— model 2 — score

— model 3 — score

19

ﬁ Cross-validation Poli DB

At the end you can compute statistics on the
obtained scores

model 1 — score (e.g. accuracy)

. average(score),
std(score)

model 2 — score

model 3 — score /

20

ﬁ Cross-validation Poli

Method 1: iterate across partitions

from sklearn.model selection import KFold

K-Fold with 5 splits
kfold = KFold(n_splits=5, shuffle=True)

for train_indices, test indices in kfold.split(X, y):

. executed 5 times, 1 for each k-fold iteration ...

Shuffle specifies to shuffle data before creating
the k partitions

21

ﬁ Cross-validation Poli DB

Method 1: iterate across partitions

for train_indices, test_indices in kfold.split(X, y):

. executed 5 times, 1 for each k-fold iteration ...

kfold.split() returns at each iteration a tuple with
two lists:

train_indices: list of the indices (row number) of the
training samples

test indices: list of the indices of the test samples

22

p Cross-validation Poli

Method 1: iterate across partitions

for train_indices, test_indices in kfold.split(X, y):
train model on X[train_indices], y[train_indices]

test model on X[test indices]

compute an evaluation score for this partition

At each iteration you can use fancy indexing to
select the samples from X and y

Then you can train a model and compute its
performances on the test set

23

p Cross-validation Poli

Method 2: use cross_val_score()

from sklearn.model selection import cross _val score

clf = DecisionTreeClassifier()
acc = cross val score(clf, X, y, cv=5, scoring="'accuracy"')
Parameters:

clf = the model that you want to be trained

X, y = your dataset, where cross-validation will be
performed

24

p Cross-validation Poli

Method 2: use cross val score()

from sklearn.model selection import cross _val score

clf = DecisionTreeClassifier()
acc = cross val score(clf, X, y, cv=5, scoring='accuracy"')
Parameters:

cv = number of partitions for cross-validation

scoring = scoring function for the evaluation

E.g. fl_macro’, f1_micro’, ‘accuracy’, ‘precision_macro

25

ﬁ Cross-validation Poli

|-
Method 2: use cross val score()
In [1]: | cross val score(clf, X, y, cv=3, scoring='accuracy')
out[1]: | array([0.85, .86, ©.833])
Return value: I

model 1 — score (e.g. accuracy) — score 1

model 2 — score (e.g.accuracy) — score 2

model 3 — score (e.g. accuracy) — score 3

26

p Cross-validation Poli DBg

Method 3: use cross val predict()

from sklearn.model selection import cross _val predict

y pred = cross val predict(clf, X, y, cv=3)

This method returns a Numpy array with the
predictions of the cv models trained during cross
validation

27

ﬁ Cross-validation Poli

Method 3: use cross val predict()

from sklearn.model selection import cross _val predict

y pred = cross val predict(clf, X, y, cv=3)

Test set predictions y_pred (Numpy array)

modell — —

model 2 — —

model3 — —

28

ﬁ Cross-validation Poli

Method 3: use cross val predict()

Finally you can evaluate the predictions

acc = accuracy score(y_test, y test pred)

y_pred (Numpy array) y_test (actual values)

A
v

29

ﬁ Cross-validation Poli DB

Difference between method 2 and method 3

y_pred (Numpy array)

method 2

y_pred (Numpy array)

method 3

P
<

v

P
<

v

&
<

v

A

v

y_test (actual values)

—— scorel \

—» score?2 —— avg

/

y_test (actual values) These values
are different!

— score 3

— > Score

30

P Notebook Examples

= 3b-Scikitlearn-
Classification.ipynb

2. Cross validation

