
DataBase and Data Mining Group Andrea Pasini, Elena Baralis

Data Science Lab
Scikit-learn

Classification

▪ Classification:
▪ Given a 2D features matrix X

▪ X.shape = (n_samples, n_features)

▪ The task consists of assigning a class label y to each
data sample
▪ y.shape = (n_samples)

2

Classification

▪ Classifiers follow the fit/predict pattern
▪ Example: Decision tree

▪ Parameters:
▪ max_depth: maximum tree height
▪ min_impurity_decrease: split nodes only if impurity

decrease above threshold

3

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(max_depth = 10,

min_impurity_decrease=0.01)

Classification

▪ Fit training data

▪ X is the 2D Numpy array with input features
▪ y is the target vector

▪ Make predictions on new data (i.e. test set)

4

clf.fit(X, y)

y_test_pred = clf.predict(X_test)

Classification

▪ To choose the most appropriate machine learning
model for your data you have to evaluate its
performances

▪ Evaluation can be performed according to a
metric (scoring function)
▪ E.g. accuracy, precision, recall

5

Classification

▪ The data that you have in a dataset is only a
sample extracted from the distribution of real
world data

6

Data distribution Dataset

Classification

▪ If you choose the best model for your dataset, it
may not perform so well for new data
▪ This risk is called overfitting

7

Data distribution Dataset

Model

EvaluationTraining

Classification

▪ To avoid overfitting evaluation must be performed
on data that is not used for training the model
▪ Divide your dataset into training and test set to

simulate two different samples in the data distribution

8

Data distribution Dataset

Model

EvaluationTraining

Classification

▪ This technique is called hold-out
▪ Training set is typically 80/90% of your data

9

Data distribution Dataset

Training set

Test set

Classification

▪ Hold-out with Scikit-learn

▪ Default test_set size is 0.25 (25%)

10

Dataset

Training set
X_train, y_train

Test set
X_test, y_test

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Classification

▪ Evaluation = compare the following two vectors
▪ y_test (𝑦): the expected result (ground truth)
▪ y_test_pred (ො𝑦): the prediction made by your model

▪ Main evaluation metrics for classification:
▪ Accuracy: % of correct samples
▪ Precision(c): % of correct samples among those

predicted with class c
▪ Recall(c); % of correct samples among those that

belong to class c in ground truth
▪ F1(c): harmonic mean between precision and recall

11

Classification

▪ Evaluation metrics with Scikit-learn

12

from sklearn.metrics import accuracy_score,

precision_recall_fscore_support

acc = accuracy_score(y_test, y_test_pred)

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)

Classification

▪ p, r, f1, s are 1D Numpy arrays with the scores
computed separately for each class
▪ Example

13

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)

0.99 0.99 0.5p =

class 0 class 1 class 2

0.77 0.97 0.99r =

many samples of class
2 are recognized, but
model is not precise
with this class

Classification

▪ Macro average scores vs Micro average scores
▪ Macro average f1:

▪ Macro average gives the same importance to all
classes, even if they are unbalanced
▪ If a class with few elements gets a low f1, the micro-

averaged score is affected with the same weight as another
with more samples

14

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)

macro_f1 = f1.mean()

Classification

▪ Micro average scores

▪ Micro average scores are computed by collecting all
the TP, FP, TN, FN independently of the class
▪ micro-p = (total_TP) / (total_TP + total_FP)
▪ micro-r = (total_TP) / (total_TP + total_FN)
▪ micro-f1 = micro-p = micro-r

▪ Classes with higher cardinality have higher impact
on these metrics

15

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred,

average = ‘micro’)

Classification

▪ Confusion matrix
▪ Useful tool when you want to inspect with more details

the classification results

16

from sklearn.metrics import confusion_matrix

conf_mat = confusion_matrix(y_test, y_test_pred)

print(conf_mat)

predicted
0 1 2

In [1]:

[[45, 0, 1],

[0, 43, 0],

[0, 3, 42]]

Out[1]:
actual
0
1
2

Notebook Examples

▪ 3b-Scikitlearn-
Classification.ipynb
▪ 1. Classification and hold

out

17

Cross-validation

▪ Divide your dataset into k partitions
▪ At each iteration select a partition to be used as

test set and the others will be the training set

18

test

test

test

k=3 partitions

iteration 1

iteration 2

iteration 3

Cross-validation

▪ At each iteration a different model is trained
▪ After training a model compute a scoring metric

to the predictions for the test set

19

test

test

test

model 1

model 2

model 3

score (e.g. accuracy)

score

score

Cross-validation

▪ At the end you can compute statistics on the
obtained scores

20

model 1

model 2

model 3

score (e.g. accuracy)

score

score

average(score),
std(score)

Cross-validation

▪ Method 1: iterate across partitions

▪ Shuffle specifies to shuffle data before creating
the k partitions

21

from sklearn.model_selection import KFold

K-Fold with 5 splits

kfold = KFold(n_splits=5, shuffle=True)

for train_indices, test_indices in kfold.split(X, y):

... executed 5 times, 1 for each k-fold iteration ...

Cross-validation

▪ Method 1: iterate across partitions

▪ kfold.split() returns at each iteration a tuple with
two lists:
▪ train_indices: list of the indices (row number) of the

training samples
▪ test_indices: list of the indices of the test samples

22

...

for train_indices, test_indices in kfold.split(X, y):

... executed 5 times, 1 for each k-fold iteration ...

Cross-validation

▪ Method 1: iterate across partitions

▪ At each iteration you can use fancy indexing to
select the samples from X and y

▪ Then you can train a model and compute its
performances on the test set

23

...

for train_indices, test_indices in kfold.split(X, y):

train model on X[train_indices], y[train_indices]

test model on X[test_indices]

compute an evaluation score for this partition

Cross-validation

▪ Method 2: use cross_val_score()

▪ Parameters:
▪ clf = the model that you want to be trained
▪ X, y = your dataset, where cross-validation will be

performed
24

from sklearn.model_selection import cross_val_score

clf = DecisionTreeClassifier()

acc = cross_val_score(clf, X, y, cv=5, scoring='accuracy')

Cross-validation

▪ Method 2: use cross_val_score()

▪ Parameters:
▪ cv = number of partitions for cross-validation
▪ scoring = scoring function for the evaluation

▪ E.g. ‘f1_macro’, 'f1_micro', ‘accuracy’, 'precision_macro'

25

from sklearn.model_selection import cross_val_score

clf = DecisionTreeClassifier()

acc = cross_val_score(clf, X, y, cv=5, scoring='accuracy')

Cross-validation

▪ Method 2: use cross_val_score()

▪ Return value:

26

cross_val_score(clf, X, y, cv=3, scoring='accuracy')

model 1

model 2

model 3

score (e.g. accuracy)

score (e.g. accuracy)

score (e.g. accuracy)

(Numpy array)

score 1

score 2

score 3

array([0.85, 0.86, 0.833])Out[1]:

In [1]:

Cross-validation

▪ Method 3: use cross_val_predict()

▪ This method returns a Numpy array with the
predictions of the cv models trained during cross
validation

27

from sklearn.model_selection import cross_val_predict

y_pred = cross_val_predict(clf, X, y, cv=3)

Cross-validation

▪ Method 3: use cross_val_predict()

28

from sklearn.model_selection import cross_val_predict

y_pred = cross_val_predict(clf, X, y, cv=3)

model 1

model 2

model 3

Test set predictions y_pred (Numpy array)

Cross-validation

▪ Method 3: use cross_val_predict()
▪ Finally you can evaluate the predictions

29

y_pred (Numpy array) y_test (actual values)

acc = accuracy_score(y_test, y_test_pred)

Cross-validation

▪ Difference between method 2 and method 3

30

y_pred (Numpy array) y_test (actual values)

y_pred (Numpy array) y_test (actual values)

method 2

method 3

score 1

score 2

score 3

score

avg

These values
are different!

Notebook Examples

▪ 3b-Scikitlearn-
Classification.ipynb
▪ 2. Cross validation

31

