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Classification:

Given a 2D features matrix X

X.shape = (n_samples, n_features)

The task consists of assigning a class label y to each
data sample

y.shape = (n_samples)
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Classifiers follow the fit/predict pattern

Example: Decision tree

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(max_depth = 10,

min_impurity decrease=0.01)

Parameters:

max_depth: maximum tree height
min_impurity decrease: split nodes only if impurity
decrease above threshold
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Fit training data

clf.fit(X, y)

X is the 2D Numpy array with input features
y is the target vector

Make predictions on new data (i.e. test set)

y _test_pred = clf.predict(X_test)
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To choose the most appropriate machine learning

model for your data you have to evaluate its
performances

Evaluation can be performed according to a
metric (scoring function)

E.g. accuracy, precision, recall
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The data that you have in a dataset is only a
sample extracted from the distribution of real
world data

Data distribution Dataset

O - O
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If you choose the best model for your dataset, it
may not perform so well for new data

This risk is called overfitting

Data distribution Dataset

O - O
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To avoid overfitting evaluation must be performed
on data that is not used for training the model

Divide your dataset into training and test set to
simulate two different samples in the data distribution

Data distribution Dataset
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This technique is called hold-out
Training set is typically 80/907% of your data

Data distribution Dataset

Q > Test set

Training set
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Hold-out with Scikit-learn

from sklearn.model selection import train_test split

X _train, X test, y train, y test = train test split(X, y, test size=0.2)

Default test_set size is 0.25 (25%)

Dataset Test set
X_test, y test

Training set
X_train, y_train
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Evaluation = compare the following two vectors

y test (V): the expected result (ground truth)
y test pred (¥): the prediction made by your model

Main evaluation metrics for classification:
Accuracy: 7% of correct samples

Precision(c): % of correct samples among those
predicted with class ¢

Recall(c); % of correct samples among those that
belong to class ¢ in ground truth

F1(c): harmonic mean between precision and recall
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Evaluation metrics with Scikit-learn

from sklearn.metrics import accuracy_score,

precision_recall fscore_ support

acc = accuracy score(y_test, y test pred)

p, r, f1, s = precision recall fscore support(y_test, y test pred)
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p, r, fl, s = precision recall fscore support(y_test, y test pred)

p, r, f1, s are 1D Numpy arrays with the scores
computed separately for each class

Example
classO class 1 class 2
P= ek et Ok «|__ many samples of class
2 are recognized, but
(= o o7 00— m.odel s not precise
with this class
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p, r, fl, s = precision recall fscore support(y_test, y test pred)

Macro average Scores Vs Micro average Scores

Macro average f1:

macro_fl = fl.mean()

Macro average gives the same importance to all
classes, even if they are unbalanced

If a class with few elements gets a low f1, the micro-

averaged score is affected with the same weight as another

with more samples
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Micro average scores

p, r, f1, s = precision recall fscore support(y_test, y test pred,
average = ‘micro’)

Micro average scores are computed by collecting all
the TP, FP, TN, FN independently of the class

micro-p = (total TP) / (total TP + total FP)

micro-r = (total TP) / (total TP + total FN)

micro—f1 = micro-p = micro-r
Classes with higher cardinality have higher impact
on these metrics
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Confusion matrix

Useful tool when you want to inspect with more details
the classification results

In [1]: | from sklearn.metrics import confusion_matrix

conf_mat = confusion matrix(y_test, y test pred)

print(conf_mat)

predicted
o 1 2
actual
Out[1]:| [[45, @, 1], <« 0
[@) 43: @]J < 1
[0, 3, 42]] < 2
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P Notebook Examples

= 3b-Scikitlearn-
Classification.ipynb

1. Classification and hold
out
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Divide your dataset into k partitions

At each iteration select a partition to be used as
test set and the others will be the training set

k=3 partitions

iteration 1 test

iteration 2 test

iteration 3 test
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At each iteration a different model is trained

After training a model compute a scoring metric
to the predictions for the test set

test

test

test

— model1l — score (e.g. accuracy)

— model 2 — score

— model 3 — score
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At the end you can compute statistics on the
obtained scores

model 1 — score (e.g. accuracy)

. average(score),
std(score)

model 2 — score

model 3 — score /
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Method 1: iterate across partitions

from sklearn.model selection import KFold

# K-Fold with 5 splits
kfold = KFold(n_splits=5, shuffle=True)

for train_indices, test indices in kfold.split(X, y):

. executed 5 times, 1 for each k-fold iteration ...

Shuffle specifies to shuffle data before creating
the k partitions
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Method 1: iterate across partitions

for train_indices, test_indices in kfold.split(X, y):

. executed 5 times, 1 for each k-fold iteration ...

kfold.split() returns at each iteration a tuple with
two lists:

train_indices: list of the indices (row number) of the
training samples

test indices: list of the indices of the test samples
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Method 1: iterate across partitions

for train_indices, test_indices in kfold.split(X, y):
train model on X[train_indices], y[train_indices]

test model on X[test indices]

compute an evaluation score for this partition

At each iteration you can use fancy indexing to
select the samples from X and y

Then you can train a model and compute its
performances on the test set
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Method 2: use cross_val_score()

from sklearn.model selection import cross _val score

clf = DecisionTreeClassifier()
acc = cross val score(clf, X, y, cv=5, scoring="'accuracy"')
Parameters:

clf = the model that you want to be trained

X, y = your dataset, where cross-validation will be
performed
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Method 2: use cross val score()

from sklearn.model selection import cross _val score

clf = DecisionTreeClassifier()
acc = cross val score(clf, X, y, cv=5, scoring='accuracy"')
Parameters:

cv = number of partitions for cross-validation

scoring = scoring function for the evaluation

E.g. fl_macro’, f1_micro’, ‘accuracy’, ‘precision_macro
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|-
Method 2: use cross val score()
In [1]: | cross val score(clf, X, y, cv=3, scoring='accuracy')
out[1]: | array([0.85, .86, ©.833])
Return value: I

model 1 — score (e.g. accuracy) — score 1

model 2 — score (e.g.accuracy) — score 2

model 3 — score (e.g. accuracy) — score 3
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Method 3: use cross val predict()

from sklearn.model selection import cross _val predict

y pred = cross val predict(clf, X, y, cv=3)

This method returns a Numpy array with the
predictions of the cv models trained during cross
validation
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Method 3: use cross val predict()

from sklearn.model selection import cross _val predict

y pred = cross val predict(clf, X, y, cv=3)

Test set predictions y_pred (Numpy array)

modell — —

model 2 — —

model3 — —
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Method 3: use cross val predict()

Finally you can evaluate the predictions

acc = accuracy score(y_test, y test pred)

y_pred (Numpy array) y_test (actual values)

A
v
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Difference between method 2 and method 3

y_pred (Numpy array)

method 2

y_pred (Numpy array)

method 3
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y_test (actual values)

—— scorel \
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/

y_test (actual values) These values
are different!

— score 3

— > Score
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= 3b-Scikitlearn-
Classification.ipynb

2. Cross validation




