

DataBase and Data Mining Group

Andrea Pasini, Elena Baralis

- Classification:
 - Given a 2D features matrix X
 - X.shape = (n_samples, n_features)
 - The task consists of assigning a class label y to each data sample

```
y.shape = (n_samples)
```


- Classifiers follow the fit/predict pattern
- Example: Decision tree

from sklearn.tree import DecisionTreeClassifier

```
clf = DecisionTreeClassifier(max_depth = 10,
```

```
min_impurity_decrease=0.01)
```

Parameters:

- *max depth*: maximum tree height
- min_impurity_decrease: split nodes only if impurity decrease above threshold

Fit training data

clf.fit(X, y)

- X is the 2D Numpy array with input features
- y is the target vector

Make predictions on new data (i.e. test set)

```
y_test_pred = clf.predict(X_test)
```


To choose the most appropriate machine learning model for your data you have to evaluate its performances

- Evaluation can be performed according to a metric (scoring function)
 - E.g. accuracy, precision, recall

The data that you have in a dataset is only a sample extracted from the distribution of real world data

- If you choose the best model for your dataset, it may not perform so well for new data
 - This risk is called overfitting

- To avoid overfitting evaluation must be performed on data that is not used for training the model
 - Divide your dataset into training and test set to simulate two different samples in the data distribution

- This technique is called hold-out
 - Training set is typically 80/90% of your data

Hold-out with Scikit-learn

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Default test_set size is 0.25 (25%)

Evaluation = compare the following two vectors

- y_test (y): the expected result (ground truth)
- y_test_pred (\hat{y}) : the prediction made by your model
- Main evaluation metrics for classification:
 - Accuracy: % of correct samples
 - Precision(c): % of correct samples among those predicted with class c
 - Recall(c); % of correct samples among those that belong to class c in ground truth
 - F1(c): harmonic mean between precision and recall

Evaluation metrics with Scikit-learn

from sklearn.metrics import accuracy_score,

precision_recall_fscore_support

acc = accuracy_score(y_test, y_test_pred)

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)

- p, r, f1, s are 1D Numpy arrays with the scores computed separately for each class
 - Example

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)

- Macro average scores vs Micro average scores
 - Macro average f1:

macro_f1 = f1.mean()

- Macro average gives the same importance to all classes, even if they are unbalanced
 - If a class with few elements gets a low f1, the microaveraged score is affected with the same weight as another with more samples

Micro average scores

 Micro average scores are computed by collecting all the TP, FP, TN, FN independently of the class

micro-f1 = micro-p = micro-r

 Classes with higher cardinality have higher impact on these metrics

Confusion matrix

 Useful tool when you want to inspect with more details the classification results

In [1]: from sklearn.metrics import confusion_matrix

```
conf_mat = confusion_matrix(y_test, y_test_pred)
```

```
print(conf_mat)
```


- 3b-Scikitlearn-Classification.ipynb
 - 1. Classification and hold out

- Divide your dataset into k partitions
- At each iteration select a partition to be used as test set and the others will be the training set

- At each iteration a **different model** is trained
- After training a model compute a scoring metric to the predictions for the test set

At the end you can compute statistics on the obtained scores

Method 1: iterate across partitions

```
from sklearn.model_selection import KFold
# K-Fold with 5 splits
kfold = KFold(n_splits=5, shuffle=True)
for train_indices, test_indices in kfold.split(X, y):
    ... executed 5 times, 1 for each k-fold iteration ...
```

Shuffle specifies to shuffle data before creating the k partitions

Method 1: iterate across partitions

```
...
for train_indices, test_indices in kfold.split(X, y):
    ... executed 5 times, 1 for each k-fold iteration ...
```

- kfold.split() returns at each iteration a tuple with two lists:
 - train_indices: list of the indices (row number) of the training samples
 - test_indices: list of the indices of the test samples

Method 1: iterate across partitions

```
...
for train_indices, test_indices in kfold.split(X, y):
    train model on X[train_indices], y[train_indices]
    test model on X[test_indices]
    compute an evaluation score for this partition
```

- At each iteration you can use fancy indexing to select the samples from X and y
- Then you can train a model and compute its performances on the test set


```
from sklearn.model_selection import cross_val_score
```

```
clf = DecisionTreeClassifier()
```

```
acc = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
```

Parameters:

- clf = the model that you want to be trained
- X, y = your dataset, where cross-validation will be performed

Method 2: use cross val score()

```
from sklearn.model_selection import cross_val_score
```

```
clf = DecisionTreeClassifier()
```

```
acc = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
```

- Parameters:
 - cv = number of partitions for cross-validation
 - scoring = scoring function for the evaluation
 - E.g. 'f1_macro', 'f1_micro', 'accuracy', 'precision_macro'

Method 3: use cross val predict()

from sklearn.model_selection import cross_val_predict

```
y_pred = cross_val_predict(clf, X, y, cv=3)
```

This method returns a Numpy array with the predictions of the *cv* models trained during cross validation

- Method 3: use cross_val_predict()
 - Finally you can evaluate the predictions

```
acc = accuracy_score(y_test, y_test_pred)
```


Difference between method 2 and method 3

- 3b-Scikitlearn-Classification.ipynb
 - 2. Cross validation

