



# Data Science Lab

Scikit-learn

DataBase and Data Mining Group

Andrea Pasini, Elena Baralis







- Scikit-learn
  - Machine learning library built on Numpy and Matplotlib
- What Scikit-learn can do
  - Unsupervised learning
    - Clustering
  - Supervised learning
    - Regression, classification
  - Data preprocessing
    - Feature extraction, feature selection, dimensionality reduction







- What Scikit-learn cannot do
  - Distributed computation on multiple computers
    - Only multi-core optimization
  - Deep learning
    - Use Keras and Tensorflow instead







- Scikit learn models work with structured data
  - Data must be in the form of 2D Numpy arrays
    - Rows represent the samples
    - Columns represent the attributes (or features)
  - This table is called **features matrix**

shape = (3, 3)Price Quantity Liters Sample 1 1.0 5 1.5 Sample 2 1.4 0.3 10 Sample 3 5.0 8 1







- Features can be
  - Real values
  - Integer values to represent categorical data
- If you have strings in your data, you first have to convert them to integers (preprocessing)

#### Input data

| 1.0 | January  | 1.5 |  |
|-----|----------|-----|--|
| 1.4 | February | 0.3 |  |
| 5.0 | March    | 1   |  |

#### Features matrix

| 1.0 | 0 | 1.5 |  |
|-----|---|-----|--|
| 1.4 | 1 | 0.3 |  |
| 5.0 | 2 | 1   |  |



5.0

0.5

#### Introduction to Scikit-learn





- Also missing values must be solved before applying any model
  - With imputation or by removing rows

1

#### Input data Features matrix 1.0 0.5 1.5 0.5 1.5 1.0 1.4 NaN 0.3 1.4 0.5 0.3 5.0 0.5 1 5.0 0.5 1 Input data Features matrix 1.0 0.5 1.5 1.0 0.5 1.5 1.4 NaN 0.3 5.0 0.5 1





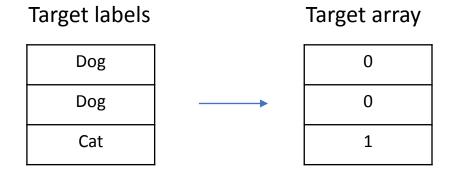


- For unsupervised learning you only need the features matrix
- For supervised learning you also need a target array to train the model
  - It is typically one-dimensional, with length n\_samples

Features matrix shape = (n\_samples, n\_features)

| 1.0 | 5  | 1.5 |  |
|-----|----|-----|--|
| 1.4 | 10 | 0.3 |  |
| 5.0 | 8  | 1   |  |

Target array
shape = (n\_samples, )


| Α |
|---|
| А |
| В |







- The target array can contain
  - Integer values, each corresponding to a class label



Real values for regression

Target array

| 0.4  |
|------|
| 1.8  |
| -6.9 |







- Scikit-learn estimator API
  - All models are represented with Python classes
  - Their classes include
    - The values of the hyperparameters used to configure the model
    - The values of the parameters learned after training
      - By convention these attributes end with an underscore
    - The methods to train the model and make inference
  - Scikit-learn models are provided with sensible defaults for the hyperparameters







- Scikit learn models follow a simple, shared pattern
  - 1. Import the model that you need to use
  - 2. **Build** the model, setting its hyperparameters
  - Train model parameters on your data
    - Using the fit method
  - 4. Use the model to make predictions
    - Using the predict/transform methods
- Sometimes fit and predict/transform are implemented within the same class method







- fit(): learn model parameters from input data
  - E.g. train a classifier
- predict(): apply model parameters to make predictions on data
  - E.g. predict class labels
- fit\_predict(): fit model and make predictions
  - E.g. apply clustering to data
- fit\_transform(): fit model and transform data
  - E.g. apply PCA to transform data







Import a model

```
from sklearn.cluster import KMeans
```

Build model object

```
km = KMeans(n_clusters = 5)
```

- The hyperparameter n\_clusters specifies the number of centroids (= number of clusters)
  - Default is 8 (buy may change across different library versions)







Apply clustering to input data

- This operation assigns data to their respective cluster
  - X is the 2D Numpy array with input features (features matrix)
  - y\_pred is a 1D array with cluster labels

| 1.0 | 5  | 1.5 | 3     |
|-----|----|-----|-------|
| 1.4 | 10 | 0.3 | <br>1 |
|     |    | ••• | 1     |





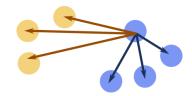


Example: DBSCAN

```
from sklearn.cluster import DBSCAN
cl_alg = DBSCAN(eps=3, min_samples=2)
```

 Example: Hierarchical clustering, n\_clusters=5, average linkage

```
from sklearn.cluster import AgglomerativeClustering
cl_alg = AgglomerativeClustering(5, linkage='average')
```





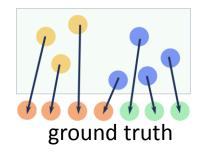



- Assessing clustering results
  - Internal metrics: use only the information of the features matrix
    - E.g. Silhouette, SSE

from sklearn.metrics import silhouette\_score
silh = silhouette\_score(X, clusters)



- Silhouette is a number in the range [-1, 1]
- Higher values mean higher cluster quality
  - Cluster that are well separated and compact








- Assessing clustering results
  - External metrics: compare a clustering result with some ground-truth labels
    - E.g. Adjusted Rand Score, Fowlkes Mallows

```
from sklearn.metrics import adjusted_rand_score
ars = adjusted_rand_score(c_truth, c_pred)
```



- The ARS score ranges in [0, 1]
- It is close to 1 when data in the predicted clusters is grouped in a similar way compared with ground truth











- Does not check for equality of target and predictions
- It checks whether data are clustered in the same way
- Example:
  - c\_truth = [1, 1, 2, 2, 2, 1]
  - c pred = [2, 2, 1, 1, 1, 2]
  - ARS(c\_truth, c\_pred) is 1



## **Notebook Examples**

3a-Scikitlearn-Clustering.ipynb

