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Linear regression

▪ Linear model to predict a single real value based 
on some input features

▪ Simple linear regression (1 input feature)
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f(x) = wx + w0 = w1x1 + w2x2 + ... + wnxn + w0

f(x) = w1x1 + w0



Linear regression

▪ Regression with Scikit-learn

▪ The hyperparameter fit_intercept specifies whether 
the intercept will be computed during training
▪ Default is True
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from sklearn.linear_model import LinearRegression

reg = LinearRegression(fit_intercept = True)

reg.fit(X_train, y_train)

y_test_pred = reg.predict(X_test)



Evaluating regression

▪ Evaluation metrics for regression:
▪ MAE (Mean Absolute Error)
▪ MSE (Mean Squared Error)
▪ R2

▪ Evaluated by comparing the two vectors
▪ y_test (𝑦): the expected result (ground truth)
▪ y_test_pred ( ො𝑦): the prediction made by your model
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Evaluating regression

▪ MAE (Mean Absolute Error)

▪ MSE (Mean Squared Error)

▪ Both positive numbers
▪ MSE tends to penalize less errors close to 0
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Evaluating regression

▪ R2 (R squared)
▪ It represents the proportion of variance explained by 

the predictions

▪ R2 is close to 1 when you have good predictions
▪ R2 negative or close to 0 means wrong predictions
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Evaluating regression

▪ Evaluating regression with Scikit-learn
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from sklearn.metrics import r2_score

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_error

# Compute R2, MAE and MSE:

r2 = r2_score(y_test, y_test_pred)

mae = mean_absolute_error(y_test, y_test_pred)

mse = mean_squared_error(y_test, y_test_pred)



Evaluating regression

▪ Evaluation with cross_val_score()

▪ Parameters:
▪ cv = number of partitions for cross-validation
▪ scoring = scoring function for the evaluation

▪ E.g. ‘r2’, ‘neg_mean_squared_error’
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from sklearn.model_selection import cross_val_score

reg = LinearRegression()

r2 = cross_val_score(reg, X, y, cv=5, scoring='r2')



Notebook Examples

▪ 3c-Scikitlearn-Linear-
Regression.ipynb
▪ 1. Simple linear 

regression
▪ 2. Linear regression 

with multiple input 
features
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Polynomial regression

▪ When data do not follow a linear trend, you can 
try to use polynomial regression

▪ It consists of:
▪ Computing new features that are power functions of 

the input features
▪ Applying linear regression on these new features
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Polynomial regression

▪ Example
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input vector = [x1 , x2 ]

degree(2) features = [x1 , x2 , x1
2 , x2

2 , x1x2]

f(x) = w1x1 + w2x2 + w3x1
2 + w4x2

2 + w5x1x2



Polynomial regression

▪ Extracting polynomial features

▪ Return value:
▪ A 1D Numpy array with the new features matrix
▪ The maximum degree of the computed features is 

passed as parameter of PolynomialFeatures()
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from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(5)

X_poly = poly.fit_transform(X)



Polynomial regression

▪ Building a pipeline with polynomial features and 
linear regression

▪ Pipelines are objects that allow concatenating 
multiple Scikit-learn models
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from sklearn.pipeline import make_pipeline

reg = make_pipeline(PolynomialFeatures(5), LinearRegression())

reg.fit(X_train, y_train)

y_test_pred = ret.predict(X_test)



Polynomial regression

▪ Higher polynomial degree means higher capacity
of your model, but ...
▪ Pay attention to not overfit your data
▪ Overfitting occurs in these cases when you have few 

samples and a model that has high capacity
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OverfittingCorrect regression



Polynomial regression

▪ To avoid this form of overfitting
▪ Use more training data (if possible)
▪ Use lower model complexity (capacity)
▪ Use regularization techniques

▪ E.g. Ridge, Lasso
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Polynomial regression

▪ Ridge and Lasso are two techniques for training 
a linear regression (or a linear regression with 
polynomial features)

▪ They try to assign values closer to zero to the 
coefficients assigned to features that are not 
useful for the regression

▪ This effect can decrease the complexity of the 
model when necessary
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Polynomial regression

▪ When training normal linear regression you 
minimize the MSE to compute the coefficients

▪ When training Ridge you minimize

▪ When training Lasso you minimize

17

𝑀𝑆𝐸 + 𝛼(෍

𝑖

𝑤𝑖
2)

𝑀𝑆𝐸 + 𝛼(෍

𝑖

𝑤𝑖 )



Polynomial regression

▪ Ridge tends to lower uniformly all the coefficients
▪ Coefficients already close to 0 do not affect the sum 

of squares

▪ Lasso tends to assign values very close to zero 
to some coefficients (feature selection)
▪ Even smaller coefficients affect the sum
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coeff values

coeff values



Polynomial regression

▪ Ridge:

▪ Lasso:
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from sklearn.linear_model import Ridge

reg = Ridge(alpha=0.5)

from sklearn.linear_model import Lasso

reg = Lasso(alpha=0.5)



Notebook Examples

▪ 3d-Scikitlearn-Polynomial-
Regression.ipynb
▪ 1. Polynomial regression
▪ 2. Overfitting and 

regularization
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Hyperparameters selection

▪ Hyperparameters vs parameters
▪ Hyperparameters are selected by the user
▪ Parameters are computed by the algorithm during 

training
▪ Important: hyperparameters cannot be set by 

finding the values that give the best results on the 
test set
▪ This methodology will overfit the test set
▪ Indeed, you are using information of the test data to 

select some training hyperparameters
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Hyperparameters selection

▪ There are two valid methodologies
▪ 1. Use hold-out to divide training data in 2 parts

▪ Fit different model configurations on the training set
▪ Pick the best one by evaluating the performances on 

the validation set
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Test set

Original training set

Training set

Validation set

Train

Evaluate



Hyperparameters selection

▪ Finally test the selected model on the actual test 
set to have a measure of how well the selected 
hyperparameters work with new data
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Test set

Original training set

Training set

Validation set

Test your best model



Hyperparameters selection

▪ 2. Use cross-validation (k-fold) on training data
▪ At each iteration 1 partition of the training data is 

used as validation set, the others are used to train
the models
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Test set

Original training set,
cross-validation
k = 3

1. val train train
2. train val train
3. train train val



Hyperparameters selection

▪ 2. Use cross-validation (k-fold) on training data
▪ For a given configuration you train k models on the 

training partitions and evaluate them on the 
validation partition
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model1
model2

model3

Hyperparameter config1

Test set

1. val train train
2. train val train
3. train train val



Hyperparameters selection

▪ 2. Use cross-validation (k-fold) on training data
▪ For each model configuration average the scores on 

the validation partitions
▪ Select the configuration with the highest average
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score1 score2 score3

average

model1
model2

model3

Hyperparameter config1

Test set

1. val train train
2. train val train
3. train train val



Hyperparameters selection

▪ This second methodology can be easily performed in 
Scikit-learn
▪ First define a dictionary with the parameter values that 

you want to tune
▪ E.g. for Ridge regresssion:

▪ With this grid Scikit-learn will try all the combinations:
▪ {alpha=0.1,fit_intercept=True}, {alpha=0.1,fit_intercept=False}, 
▪ {alpha=0.2,fit_intercept=True}, {alpha=0.2,fit_intercept=False}, 
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param_grid = {‘alpha’ : [0.1, 0.2], 

‘fit_intercept’ : [True, False]}



Hyperparameters selection

▪ Then define a model and call GridSearchCV

▪ This code will pick the best configuration of the 
param grid, for Ridge model, 
▪ According to the R2 score
▪ Using a cross validation with k=5 partitions
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from sklearn.model_selection import GridSearchCV

reg = Ridge()

gridsearch = GridSearchCV(reg, param_grid, scoring='r2', cv=5)

gridsearch.fit(X_train, y_train)



Hyperparameters selection

▪ Best parameter configuration can be found in the 
best_params_ attribute of the gridsearch object

▪ An instance of the model with the best 
configuration is available in best_estimator_
▪ It is not trained! You have to fit it to training data
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...

gridsearch.fit(X_train, y_train)

print(gridsearch.best_params_[‘alpha’])

print(gridsearch.best_params_[‘fit_intercept’)

best_configured_model = gridsearch.best_estimator_



Notebook Examples

▪ 3d-Scikitlearn-Polynomial-
Regression.ipynb
▪ 3. Grid-search to select 

model hyperparameters
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