
DataBase and Data Mining Group Andrea Pasini, Elena Baralis

Data Science Lab
Scikit-learn

Linear regression

▪ Linear model to predict a single real value based
on some input features

▪ Simple linear regression (1 input feature)

2

f(x) = wx + w0 = w1x1 + w2x2 + ... + wnxn + w0

f(x) = w1x1 + w0

Linear regression

▪ Regression with Scikit-learn

▪ The hyperparameter fit_intercept specifies whether
the intercept will be computed during training
▪ Default is True

3

from sklearn.linear_model import LinearRegression

reg = LinearRegression(fit_intercept = True)

reg.fit(X_train, y_train)

y_test_pred = reg.predict(X_test)

Evaluating regression

▪ Evaluation metrics for regression:
▪ MAE (Mean Absolute Error)
▪ MSE (Mean Squared Error)
▪ R2

▪ Evaluated by comparing the two vectors
▪ y_test (𝑦): the expected result (ground truth)
▪ y_test_pred (ො𝑦): the prediction made by your model

4

Evaluating regression

▪ MAE (Mean Absolute Error)

▪ MSE (Mean Squared Error)

▪ Both positive numbers
▪ MSE tends to penalize less errors close to 0

5

𝑀𝐴𝐸 =
1

𝑛
෍

𝑖

𝑦𝑖 − ෝ𝑦𝑖

𝑀𝑆𝐸 =
1

𝑛
෍

𝑖

𝑦𝑖 − ෝ𝑦𝑖
2

Evaluating regression

▪ R2 (R squared)
▪ It represents the proportion of variance explained by

the predictions

▪ R2 is close to 1 when you have good predictions
▪ R2 negative or close to 0 means wrong predictions

6

𝑅2 = 1 −
𝑀𝑆𝐸

𝑠𝑡𝑑2

Evaluating regression

▪ Evaluating regression with Scikit-learn

7

from sklearn.metrics import r2_score

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_error

Compute R2, MAE and MSE:

r2 = r2_score(y_test, y_test_pred)

mae = mean_absolute_error(y_test, y_test_pred)

mse = mean_squared_error(y_test, y_test_pred)

Evaluating regression

▪ Evaluation with cross_val_score()

▪ Parameters:
▪ cv = number of partitions for cross-validation
▪ scoring = scoring function for the evaluation

▪ E.g. ‘r2’, ‘neg_mean_squared_error’

8

from sklearn.model_selection import cross_val_score

reg = LinearRegression()

r2 = cross_val_score(reg, X, y, cv=5, scoring='r2')

Notebook Examples

▪ 3c-Scikitlearn-Linear-
Regression.ipynb
▪ 1. Simple linear

regression
▪ 2. Linear regression

with multiple input
features

9

Polynomial regression

▪ When data do not follow a linear trend, you can
try to use polynomial regression

▪ It consists of:
▪ Computing new features that are power functions of

the input features
▪ Applying linear regression on these new features

10

Polynomial regression

▪ Example

11

input vector = [x1 , x2]

degree(2) features = [x1 , x2 , x1
2 , x2

2 , x1x2]

f(x) = w1x1 + w2x2 + w3x1
2 + w4x2

2 + w5x1x2

Polynomial regression

▪ Extracting polynomial features

▪ Return value:
▪ A 1D Numpy array with the new features matrix
▪ The maximum degree of the computed features is

passed as parameter of PolynomialFeatures()

12

from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(5)

X_poly = poly.fit_transform(X)

Polynomial regression

▪ Building a pipeline with polynomial features and
linear regression

▪ Pipelines are objects that allow concatenating
multiple Scikit-learn models

13

from sklearn.pipeline import make_pipeline

reg = make_pipeline(PolynomialFeatures(5), LinearRegression())

reg.fit(X_train, y_train)

y_test_pred = ret.predict(X_test)

Polynomial regression

▪ Higher polynomial degree means higher capacity
of your model, but ...
▪ Pay attention to not overfit your data
▪ Overfitting occurs in these cases when you have few

samples and a model that has high capacity

14

OverfittingCorrect regression

Polynomial regression

▪ To avoid this form of overfitting
▪ Use more training data (if possible)
▪ Use lower model complexity (capacity)
▪ Use regularization techniques

▪ E.g. Ridge, Lasso

15

Polynomial regression

▪ Ridge and Lasso are two techniques for training
a linear regression (or a linear regression with
polynomial features)

▪ They try to assign values closer to zero to the
coefficients assigned to features that are not
useful for the regression

▪ This effect can decrease the complexity of the
model when necessary

16

Polynomial regression

▪ When training normal linear regression you
minimize the MSE to compute the coefficients

▪ When training Ridge you minimize

▪ When training Lasso you minimize

17

𝑀𝑆𝐸 + 𝛼(෍

𝑖

𝑤𝑖
2)

𝑀𝑆𝐸 + 𝛼(෍

𝑖

𝑤𝑖)

Polynomial regression

▪ Ridge tends to lower uniformly all the coefficients
▪ Coefficients already close to 0 do not affect the sum

of squares

▪ Lasso tends to assign values very close to zero
to some coefficients (feature selection)
▪ Even smaller coefficients affect the sum

18

coeff values

coeff values

Polynomial regression

▪ Ridge:

▪ Lasso:

19

from sklearn.linear_model import Ridge

reg = Ridge(alpha=0.5)

from sklearn.linear_model import Lasso

reg = Lasso(alpha=0.5)

Notebook Examples

▪ 3d-Scikitlearn-Polynomial-
Regression.ipynb
▪ 1. Polynomial regression
▪ 2. Overfitting and

regularization

20

Hyperparameters selection

▪ Hyperparameters vs parameters
▪ Hyperparameters are selected by the user
▪ Parameters are computed by the algorithm during

training
▪ Important: hyperparameters cannot be set by

finding the values that give the best results on the
test set
▪ This methodology will overfit the test set
▪ Indeed, you are using information of the test data to

select some training hyperparameters

21

Hyperparameters selection

▪ There are two valid methodologies
▪ 1. Use hold-out to divide training data in 2 parts

▪ Fit different model configurations on the training set
▪ Pick the best one by evaluating the performances on

the validation set

22

Test set

Original training set

Training set

Validation set

Train

Evaluate

Hyperparameters selection

▪ Finally test the selected model on the actual test
set to have a measure of how well the selected
hyperparameters work with new data

23

Test set

Original training set

Training set

Validation set

Test your best model

Hyperparameters selection

▪ 2. Use cross-validation (k-fold) on training data
▪ At each iteration 1 partition of the training data is

used as validation set, the others are used to train
the models

24

Test set

Original training set,
cross-validation
k = 3

1. val train train
2. train val train
3. train train val

Hyperparameters selection

▪ 2. Use cross-validation (k-fold) on training data
▪ For a given configuration you train k models on the

training partitions and evaluate them on the
validation partition

25

model1
model2

model3

Hyperparameter config1

Test set

1. val train train
2. train val train
3. train train val

Hyperparameters selection

▪ 2. Use cross-validation (k-fold) on training data
▪ For each model configuration average the scores on

the validation partitions
▪ Select the configuration with the highest average

26

score1 score2 score3

average

model1
model2

model3

Hyperparameter config1

Test set

1. val train train
2. train val train
3. train train val

Hyperparameters selection

▪ This second methodology can be easily performed in
Scikit-learn
▪ First define a dictionary with the parameter values that

you want to tune
▪ E.g. for Ridge regresssion:

▪ With this grid Scikit-learn will try all the combinations:
▪ {alpha=0.1,fit_intercept=True}, {alpha=0.1,fit_intercept=False},
▪ {alpha=0.2,fit_intercept=True}, {alpha=0.2,fit_intercept=False},

27

param_grid = {‘alpha’ : [0.1, 0.2],

‘fit_intercept’ : [True, False]}

Hyperparameters selection

▪ Then define a model and call GridSearchCV

▪ This code will pick the best configuration of the
param grid, for Ridge model,
▪ According to the R2 score
▪ Using a cross validation with k=5 partitions

28

from sklearn.model_selection import GridSearchCV

reg = Ridge()

gridsearch = GridSearchCV(reg, param_grid, scoring='r2', cv=5)

gridsearch.fit(X_train, y_train)

Hyperparameters selection

▪ Best parameter configuration can be found in the
best_params_ attribute of the gridsearch object

▪ An instance of the model with the best
configuration is available in best_estimator_
▪ It is not trained! You have to fit it to training data

29

...

gridsearch.fit(X_train, y_train)

print(gridsearch.best_params_[‘alpha’])

print(gridsearch.best_params_[‘fit_intercept’)

best_configured_model = gridsearch.best_estimator_

Notebook Examples

▪ 3d-Scikitlearn-Polynomial-
Regression.ipynb
▪ 3. Grid-search to select

model hyperparameters

30

