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Petrographic Image Analysis
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Rock cores

▪ Rock core: small cylinder extracted from a rock sample

Microscope scanningThin sections

▪ Thin section: slice of a core to be analyzed with 
scanning electronic microscope (SEM)

Extracted pores

▪ Pore: cavity among mineral grains of the thin section



Petrographic Image Analysis

▪ Pore Typing
▪ Each thin section contains millions of pores
▪ Experts manually analyze a small subsample of pores
▪ Grouping these pores according to their nature allows 

characterizing the rock sample
• structure
• permeability
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Petrographic Image Analysis

▪ Research objectives:
▪ Reduce the manual effort for categorizing pores
▪ Improve categorization accuracy by extending the analysis to 

the whole amount of pores
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Problem setting

▪ Input data:
▪ About 30 different datasets from different rock types 

(e.g. sandstone, quartz)
▪ Each dataset contains pores from a single thin 

section
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Dset1

Dset2

Pore1

PoreN

Pore1

PoreN'



Problem setting

▪ Analysis output
▪ Pore categorization

▪ 1 label for each pore in the thin section
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predict



Problem setting

▪ Pore categories are only partially known
▪ Geologists defined a taxonomy with known 

categories
▪ However they want to complete the taxonomy by 

discovering new, unknown, pore categories
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Known category

Discovered category



Problem setting

▪ Provided datasets do not have training labels
▪ Labels are missing even for known categories

▪ Unsupervised or semi-supervised approaches 
should be used
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Known category

Discovered category

Taxonomy
Dataset features

predict

Domain knowledge

Pore1

PoreN



Problem setting

▪ Different rock types (e.g. sandstone, quartz) 
possibly present different pore types
▪ Probably this implies training different models
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Model a

Model b

Dset2
Type = Quartz

Dset1
Type = Sandstone



Problem setting

▪ Different rock types (e.g. sandstone, quartz) 
possibly present different pore types
▪ Different taxonomies
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Model a

Model b

Sandstone Taxonomy

Dset2
Type = Quartz

Dset1
Type = Sandstone

Quartz Taxonomy



Design of the analysis workflow
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▪ Pore description
▪ What are meaningful features to 

describe data?
▪ Algorithm for predictions

▪ Unsupervised vs supervised models
▪ Result description and evaluation

▪ We aim at interpretable results
▪ How to evaluate the quality of the results?



Design of the analysis workflow
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▪ Pore description
▪ Image analysis with deep learning 

techniques (e.g. CNNS)
▪ However we do not have class labels for 

training supervised models

▪ Customized feature extraction 
techniques
▪ Exploit domain knowledge to transform 

pore images to numerical features
▪ This is the most natural choice given our 

problem setting



Design of the analysis workflow
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▪ Algorithm for predictions
▪ Unsupervised vs supervised models

▪ Apply simpler techniques first
▪ Then inspect more complex techniques to improve 

quality of the predictions
▪ Clustering techniques can be easily applied to 

pores
▪ Requirement: represent pores with numerical 

features



Design of the analysis workflow
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▪ Result description and evaluation
▪ Interpretable results:

▪ E.g. cluster description for geologist inspection

▪ How to evaluate the quality of the results?
▪ No class labels:

• Cannot use external metrics (e.g. ARS)
▪ Geometrical indexes (e.g. SSE, silhouette)

• May not be aligned with the semantic taxonomy
▪ Domain expert inspection by means of cluster descriptions



Design of the analysis workflow

▪ The proposed workflow evolved during the 
different interactions with geologists
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Baseline (standard 
clustering 
techniques)

Adaptive Hierarchical 
Clustering (AHC)

AdaPro (semi-supervised)time

interactions

Domain expertsData science experts



Baseline workflow
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▪ Pore categorization by means of standard 
clustering techniques

Feature extraction and selection
Correlation analysis
Attribute families

Clustering
Feature normalization
K-means clustering
Experiments with different 
k

Cluster Description
Decision tree
Attribute importance



Baseline workflow

▪ Feature extraction
▪ Each pore of a thin section is considered a sample
▪ Samples should be described with numerical features

▪ Automatic tool for
▪ Acquiring grayscale SEM image from a thin section
▪ Extracting pore pixels
▪ Computing features to describe each pore
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Baseline workflow

▪ Pore extraction procedure
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Acquire image Thresholding

intensity < thr

Example of extracted pore



Baseline workflow

▪ The acquisition tool used by domain experts extracts 46
numerical features

▪ Pores must be characterized according to both shape
and size features

▪ Pore shape: 
• e.g. aspect, stretching and irregularity of the pore outline

▪ Pore size: 
• e.g. area, diameter
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a1 a2 a3 ... a46

▪ Pore extraction procedure



Baseline workflow

▪ Dataset generation:
▪ Each thin section is converted to a tabular dataset by 

collecting features of all its pores
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a1 a2 a3 ... a46

a1 a2 a3 ... a46

a1 a2 a3 ... a46

Features (46)

Pores
(10K-1M)

Thin section 1



Baseline workflow

▪ Feature selection
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Baseline workflow

▪ Pearson correlation to inspect relationships
▪ Black cells correspond to the attributes that have 

been removed
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Thin section 1

Correlation matrix



Baseline workflow

▪ Pearson correlation to inspect relationships

24

▪ For each pair of attributes 
plot the module of Pearson 
correlation

▪ Sort attribute pairs by 
increasing Pearson values

▪ Different colors correspond 
to different thin sections

Pe
ar
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Attribute pairs
(N * (N-1) / 2)
N = 46

Filter



Baseline workflow
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▪ Describe correlated attributes with a graph
▪ Draw an edge between attribute pairs with abs(pearson) > 0.85
▪ Extract connected components to detect attribute families

▪ Example on dataset Dset1
▪ 26 + 3 + 3 = 32 correlated attributes, 14 uncorrelated ones (singleton)

Irregularity 1

Irregularity 2

Irregularity 3

Color (std dev)

Color (min)

Color (mean)26 attributes (e.g. radius, diameter, ...)



Baseline workflow
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▪ Family leader
▪ Select from a family the attribute that is:

▪ The most correlated with other attributes within the family
▪ The most uncorrelated from attributes outside the family

Irregularity 1

Irregularity 2

Irregularity 3

Color (std dev)

Color (min)

Color (mean)

14 uncorrelated attributes



Baseline workflow
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▪ Select 1 family-leader from each family of correlated attributes
▪ Replace the attributes of the same family with the family leader 

only



Baseline workflow

▪ Pore clustering
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Baseline workflow

▪ First clustering attempt
▪ KMeans with different values of k
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k = 6



11           19          68         161          207        723        978        1923       3172      4955     12549     23294 6609      4160       4701      4885      4739        4459       4465      3721

Cluster id (0:21)
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Baseline workflow

▪ Cluster description k = 22
▪ Show attribute values for cluster centroids

Attribute values for a 
given centroid

# = 4739

Cluster centroid

Cluster cardinality
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Baseline workflow

▪ Cluster description (method 2)
▪ Train a decision tree classifier to predict the cluster 

labels obtained with KMeans
▪ Inspecting the generated tree should provide 

descriptions of the cluster shape

Cluster labels
(KMeans)

Trained decision tree

Features matrix

Train
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Baseline workflow

▪ Cluster description (method 2)
▪ Compute a decision tree for each dataset (thin 

section)
▪ Sort attributes by feature importance (decision tree 

metric)
▪ Top-5 important attributes

• Effectively useful for pore categorization, according to 
geologists
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Baseline workflow

▪ Discussion of the results
▪ Geologist inspect microscope images where 

clustered pores are depicted with different colors

▪ KMeans, K=6
▪ Categories are mainly divided by pore size
▪ Complex geological categories are not recognized

▪ KMeans, K=22
▪ Pores of different geological categories are mostly divided
▪ However there is a high oversplitting of pore categories
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K-means (k=4)

▪ Verify that pore size is mainly driving cluster 
separation with low values of k

▪ PCA representation, K = 4 

PC1

▪ Principal component 
PC1 is parallel to 
many attributes 
related to pore size 
(e.g. diameter, area, 
radius, ...)

Baseline workflow
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▪ Small pores are the majority of our dataset
▪ They form a dense cluster

PC1

▪ According to geologists, 
smaller pores have all 
approximately the same 
geological characteristics

Baseline workflow

Small pores

Smaller

Bigger
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▪ The dense cluster of small pores can be 
removed from the analysis to facilitate the 
recognition of other important pore categories

PC1

▪ Apply a filter threshold 
on pore diameter before 
applying Kmeans

Baseline workflow

Small pores

Smaller

Bigger



Baseline workflow

▪ Second clustering attempt
▪ KMeans after filtering small pores
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Baseline workflow

▪ Second clustering attempt
▪ KMeans after filtering small pores
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With filteringWithout filtering



Baseline workflow

▪ According to domain experts, the new obtained 
clusters (K=4) start to recognize important 
geological groups among pores
▪ However some of the detected groups should be 

further divided into sub-clusters
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Good cluster

Need for
sub-clusters



Baseline workflow

▪ A hierarchy with super- and 
sub-clusters may help to create 
the pore categorization 
taxonomy
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Good cluster

Need for
sub-clusters 
to obtain 
known 
categories

Known category

Discovered category

Taxonomy
Domain knowledge



Baseline workflow

▪ Solutions
▪ Run KMeans on the clusters that need further division

▪ Higher computational time, did not give good results
▪ Exploit a hierarchical clustering technique to find 

multiple levels of clusters
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Good cluster

Need for
sub-clusters



AHC workflow

▪ Adaptive Hierarchical Clustering 
(AHC)

"Adaptive Hierarchical Clustering for Petrographic Image Analysis"
Andrea Pasini, Elena Baralis, Paolo Garza et al. DARLI-AP 2019, Lisbon
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AHC workflow

▪ Adaptive Hierarchical Clustering (AHC)
▪ We propose a novel algorithm that exploits 

hierarchical clustering dendrograms to inspect multiple 
level clusters

▪ Super-clusters:
▪ Few macro-categories similar to the ones obtained with 

K=4 and the baseline workflow
▪ Sub-clusters

▪ Further subdivision of the super-clusters that are not pure 
according to domain experts
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AHC workflow

▪ Adaptive Hierarchical Clustering (AHC)
▪ We use Hierarchical clustering with Ward's linkage

▪ Allows obtaining similar clusters to the ones generated by  
KMeans

▪ The dendrogram hierarchy can be exploited to 
obtain the super- and sub-cluster levels without 
running multiple times a clustering algorithm
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AHC workflow

▪ Adaptive Hierarchical Clustering (AHC)
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• Feature selection
• Normalization
• Pore filtering by size



AHC workflow

▪ Adaptive Hierarchical Clustering (AHC)
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cluster1 cluster2

k=4

super-clusters

k=4

k'=3

k''=3

sub-clusters



AHC workflow
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Artificially generated 
thin section

Hierarchical clustering
k=3

Triangles and 
circles should lie 
in different 
clusters

Data distribution

Why standard algorithms do 
not suit our needs



AHC workflow
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Artificially generated 
thin section

Stars should not
be separated

Data distribution

Why standard algorithms do 
not suit our needs

Hierarchical clustering
k=5



AHC workflow

49

Artificially generated 
thin section

Stars are no 
more separated

Our technique cuts dendrogram 
at different heights
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▪ super-clusters
▪ Number of clusters decided by means of silhouette

▪ sub-clusters
▪ Their number is decided by domain experts after SEM 

images inspection

AHC workflow

# of super-clusters



▪ Results and discussion
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Cluster hierarchy

Cluster description

Cluster visualization

AHC workflow



▪ Results and discussion
▪ The proposed pipeline is still characterized by a 

human-in-the-loop technique
▪ Number of super-clusters and sub-clusters must be 

decided for each thin section to be analyzed

▪ Can we automate the technique?
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AHC workflow



AdaPro workflow

▪ Adaptive hierarchical clustering 
by means of  Prototypes 
(AdaPro)
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Andrea Pasini, Elena Baralis, Paolo Garza
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Thin section 1

Thin section 2

Prototypes

Categorized pores

AdaPro workflow

▪ Geologists provide few labeled 
pores (prototypes)

▪ Prototypes extracted from a given thin 
section should be reused for 
clustering others
▪ Reduced manual effort
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Thin section 1

Thin section 2

Prototypes

Categorized pores

AdaPro workflow

▪ Prototypes are too limited for 
classification
▪ Approximately 50 prototypes (0.07% 

of the total)
▪ 5 pore categories

▪ Standard clustering approaches 
cannot exploit labeled data
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Labeled prototypes (50)

Thin section pores (5K-50K)
AdaPro

AdaPro workflow
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Exploit the prototype distribution in 
each super-cluster to decide which of 
them should be further divided

super-clusters

Super-clusters that 
are not pure are 
split in sub-clusters

C1 C2
c1

c2 c3

prototypes

AdaPro workflow



58

AdaPro workflow

▪ Automatic discovery of super-clusters by means 
of silhouette
▪ Allows discovering unknown coarse-grained

categories
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Homogeneous but not complete

Over-splitting

Complete but not homogeneous

Under-splitting

AdaPro workflow

super-clusters

C1 C2
▪ Automatic discovery of the number of 

sub-clusters
▪ Divide super-clusters to obtain a pure 

subdivision

▪ Homogeneity and completeness scores of prototypes
inside sub-clusters
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AdaPro workflow

▪ Homogeneity and completeness scores
▪ These scores should be optimized with sub-clusters

▪ Fowlkes-Mallows (FM) score averages the effects of 
homogeneity and completeness
▪ Compute FM for each super-cluster and for different values of 

k' (number of sub-clusters)
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AdaPro workflow

▪ Automatic discovery of sub-clusters
▪ Find regions where FM increases with k'
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Use silhouette to 
find super-clusters

Use prototype 
distribution to 
find sub-clusters

AdaPro workflow



Prototypes

AdaPro workflow

▪ AdaPro – Use case
▪ Experts manually label a small subsample of prototypes 

in a reference thin section
▪ AdaPro takes as input the prototypes and a target thin 

section
▪ Advantage: prototypes are reusable for different thin sections
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Baselines

AdaPro workflow

▪ For this dataset ground truth 
labels are available
▪ ARI, V-Measure, 

Fowlkes-Mallows 
measure the similarity 
between clustering 
results and ground truth

▪ Best performances for 
AdaPro

▪ Evaluation on a UCI dataset (non-geological 
domain)
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AdaPro workflow

▪ Hierarchical clustering:
▪ k=15 homogeneous but not 

complete
▪ k=11 complete but not 

homogeneous
▪ AdaPro:

▪ Reaches high 
homogeneity whilst 
keeping high 
completeness

▪ Evaluation on a UCI dataset (non-geological 
domain)



Thank you for the attention
Any questions?


