Database and data mining group, Politecnico di Torino

Data warehouse Introduction

Elena Baralis Politecnico di Torino

Elena Baralis Politecnico di Torino

Copyright – All rights reserved

INTRODUCTION - 1

Decision support systems

- Huge operational databases are available in most companies
 - I these databases may provide a large wealth of useful information
- Decision support systems provide means for
 In depth analysis of a company's business
 In faster and better decisions

Strategic decision support

- Demand evolution analysis and forecast
- Critical business areas identification
- Budgeting and management transparency — reporting, practices against frauds and money laundering
- Identification and implementation of winning strategies

□cost reduction and profit increase

Business Intelligence

- BI provides support to strategic decision support in companies
- Objective: transforming company data into actionable information
 - at different detail levels
 - for analysis applications
- Users may have heterogeneous needs
- BI requires an appropriate hardware and software infrastructure

Applications

- Manifacturing companies: order management, client support
- Distribution: user profile, stock management
- Financial services: buyer behavior (credit cards)
- Insurance: claim analysis, fraud detection
- Telecommunication: call analysis, churning, fraud detection
- Public service: usage analysis
- Health: service analysis and evaluation

Data warehouse

- Database devoted to decision support, which is kept *separate* from company operational databases
- Data which is
 - devoted to a specific subject
 - Integrated and consistent
 - time dependent, non volatile
 - used for decision support in a company

W. H. Inmon, Building the data warehouse, 1992

Why separate data?

- Performance
 - complex queries reduce performance of operational transaction management
 - different access methods at the physical level
- Data management
 - missing information (e.g., history)
 - data consolidation
 - data quality (inconsistency problems)

Data structure and data analysis

Elena Baralis Politecnico di Torino

Elena Baralis Politecnico di Torino

Copyright – All rights reserved

INTRODUCTION - 8

Multidimensional representation

- Data are represented as an (hyper)cube with three or more dimensions
- Measures on which analysis is performed: cells at dimension intersection
- Data warehouse for tracking sales in a supermarket chain:
 - dimensions: product, shop, time
 - measures: sold quantity, sold amount, ...

Multidimensional representation

Elena Baralis Politecnico di Torino

Relational representation: star model

- Numerical measures stored in the *fact table* – attribute domain is numeric
- *Dimensions* describe the context of each measure in the fact table
 - -characterized by many descriptive attributes

Data warehouse for tracking sales in a supermarket chain

Data warehouse size

- Time dimension: 2 years x 365 days
- Shop dimension: 300 shops
- Product dimension: 30.000 products, of which 3.000 sold every day in every shop
- Number of rows in the fact table:

730 x 300 x 3000 = 657 millions

\Rightarrow Size of the fact table \approx 21GB

Data analysis tools

- OLAP analysis: complex aggregate function computation
 - support to different types of aggregate functions (e.g., moving average, top ten)
- Data analysis by means of data mining techniques
 - various analysis types
 - significant algorithmic contribution

Data analysis tools

- Presentation
 - separate activity: data returned by a query may be rendered by means of different presentation tools
- Motivation search
 - Data exploration by means of progressive,
 "incremental" refinements (e.g., drill down)

Data warehouse architectures

Elena Baralis Politecnico di Torino

Elena Baralis Politecnico di Torino

Copyright – All rights reserved

INTRODUCTION - 16

Data warehouse architectures

- Separation between transactional computing and data analysis
 - avoid one level architectures
- Architectures characterized by two or more levels
 - separate to a different extent data incoming into the data warehouse from analyzed data
 - more scalable

Data warehouse and data mart

Company data warehouse: it contains all the information on the company business

- extensive functional modelling process
- design and implementation require a long time
- Data mart: departimental information subset focused on a given subject
 - two architectures
 - dependent, fed by the company data warehouse
 - independent, fed directly by the sources
 - faster implementation
 - requires careful design, to avoid subsequent data mart integration problems

Servers for Data Warehouses

- ROLAP (Relational OLAP) server
 - extended relational DBMS
 - compact representation for sparse data
 - SQL extensions for aggregate computation
 - specialized access methods which implement efficient OLAP data access
- MOLAP (Multidimensional OLAP) server
 - data represented in proprietary (multidimensional) matrix format
 - sparse data require compression
 - special OLAP primitives
- HOLAP (Hybrid OLAP) server

Extraction, Transformation and Loading (ETL)

Prepares data to be loaded into the data

- warehouse
 - data extraction from (OLTP and external) sources
 - data cleaning
 - data transformation
 - data loading
- Performed
 - when the DW is first loaded
 - during periodical DW refresh

ETL process

- Data extraction: data acquisition from sources
- *Data cleaning*: techniques for improving data quality (correctness and consistency)
- Data transformation: data conversion from operational format to data warehouse format
- Data loading: update propagation to the data warehouse

Metadata

metadata = data about data

- Different types of metadata:
 - for data transformation and loading: describe data sources and needed transformation operations
 - Useful using a common notation to represent data sources and data after transformation
 - CWMI (Common Warehouse Metadata Initiative): standard proposed by OMG to exchange data between DW tools and repository of metadata in heterogenous and distributed environments
 - for data management: describe the structure of the data in the data warehouse
 - also for materialized view
 - for query management: data on query structure and to monitor query execution
 - SQL code for the query
 - execution plan
 - memory and CPU usage

Politecnico di Torino

DBG C

Two level architecture features

- Decoupling between source and DW data
 - management of external (not OLTP) data sources (e.g., text files)
 - data modelling suited for OLAP analysis
 - physical design tailored for OLAP load
- Easy management of different temporal granularity of operational and analytical data
- Partitioning between transactional and analytical load
- "On the fly" data transformation and cleaning (ETL)

Copyright – All rights reserved

INTRODUCTION - 26

Elena Baralis Politecnico di Torino

Three level architecture features

- Staging area: buffer area allowing the separation between ET management and data warehouse loading
 - complex transformation and cleaning operations are eased
 - provides an integrated model of business data, still close to OLTP representation
 - sometime denoted as Operational Data Store (ODS)
- Introduces further redundancy
 - more disk space is required for data storage