Most companies own huge databases containing:
- operational data
- textual documents
- experiment results

These databases are a potential source of useful information.

Data analysis
- Information is “hidden” in huge datasets
 - not immediately evident
 - human analysts need a large amount of time for the analysis
 - most data is never analyzed at all

The Data Gap

Data mining
- Non trivial extraction of
 - implicit
 - previously unknown
 - potentially useful information from available data
- Extraction is automatic
 - performed by appropriate algorithms
- Extracted information is represented by means of abstract models
 - denoted as pattern

Example: profiling
- Consumer behavior in e-commerce sites
 - Selected products, requested information, ...
- Search engines and portals
 - Query keywords, searched topics and objects
- Social network data
 - Facebook, google+ profiles
 - Dynamic data: posts on blogs, FB, tweets
- Maps and georeferenced data
 - Localization, interesting locations for users

Example: profiling
- User/service profiling
 - Recommendation systems
 - Advertisements
- Market basket analysis
 - Correlated objects for cross selling
 - User registration, fidelity cards
- Context-aware data analysis
 - Integration of different dimensions
 - E.g., location, time of the day, user interest
- Text mining
 - Brand reputation, sentiment analysis, topic trends
Data mining fundamentals

Example: biological data
- Microarray
 - expression level of genes in a cellular tissue
 - various types (mRNA, DNA)
- Patient clinical records
 - personal and demographic data
 - exam results
- Textual data in public collections
 - heterogeneous formats, different objectives
 - scientific literature (PUBMed)
 - ontologies (Gene Ontology)

Biological analysis objectives
- Clinical analysis
 - detecting the causes of a pathology
 - monitoring the effect of a therapy
 ⇒ diagnosis improvement and definition of new specific therapies
- Bio-discovery
 - gene network discovery
 - analysis of multifactorial genetic pathologies
- Pharmacogenesis
 - lab design of new drugs for genic therapies

Knowledge Discovery Process
KDD = Knowledge Discovery from Data

Preprocessing
- data cleaning
 - reduces the effect of noise
 - identifies or removes outliers
 - solves inconsistencies
- data integration
 - reconciles data extracted from different sources
 - integrates metadata
 - identifies and solves data value conflicts
 - manages redundancy

Real world data is "dirty"
Without good quality data, no good quality pattern

Data mining origins
- Draws from
 - statistics, artificial intelligence (AI)
 - pattern recognition, machine learning
 - database systems
- Traditional techniques are not appropriate because of
 - significant data volume
 - large data dimensionality
 - heterogeneous and distributed nature of data

Analysis techniques
- Descriptive methods
 - Extract interpretable models describing data
 - Example: client segmentation
- Predictive methods
 - Exploit some known variables to predict unknown or future values of (other) variables
 - Example: "spam" email detection
Data mining fundamentals

Classification

- Objectives
 - prediction of a class label
 - definition of an interpretable model of a given phenomenon

- Approaches
 - decision trees
 - bayesian classification
 - classification rules
 - neural networks
 - k-nearest neighbours
 - SVM

Classification

- Requirements
 - accuracy
 - interpretability
 - scalability
 - noise and outlier management

- Applications
 - detection of customer propension to leave a company (churn or attrition)
 - fraud detection
 - classification of different pathology types
 - ...

Clustering

- Objectives
 - detecting groups of similar data objects
 - identifying exceptions and outliers

- Approaches
 - partitional (K-means)
 - hierarchical
 - density-based (DBSCAN)
 - SOM

- Requirements
 - scalability
 - management of
 - noise and outliers
 - large dimensionality
 - interpretability
Data mining fundamentals

Clustering
- Applications
 - customer segmentation
 - clustering of documents containing similar information
 - grouping genes with similar expression pattern
 - ...

Association rules
- Objective
 - extraction of frequent correlations or pattern from a transactional database

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diapers, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diapers, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diapers, Milk</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Association rule
 - diapers ⇒ beer
 - 2% of transactions contain both items
 - 30% of transactions containing diapers also contain beer

Tickets at a supermarket counter

Association rules
- Applications
 - market basket analysis
 - cross-selling
 - shop layout or catalogue design

Other data mining techniques
- Sequence mining
 - ordering criteria on analyzed data are taken into account
 - example: motif detection in proteins
- Time series and geospatial data
 - temporal and spatial information are considered
 - example: sensor network data
- Regression
 - prediction of a continuous value
 - example: prediction of stock quotes
- Outlier detection
 - example: intrusion detection in network traffic analysis

Open issues
- Scalability to huge data volumes
- Data dimensionality
- Complex data structures, heterogeneous data formats
- Data quality
- Privacy preservation
- Streaming data

Elena Baralis
Politecnico di Torino