Introduction to the course

On Line Transaction Processing (OLTP)
- Traditional DBMS usage
- Characterized by
 - snapshot of current data values
 - detailed data, relational representation
 - structured, repetitive operations
 - read/write access to few records
 - short transactions
 - isolation, reliability, and integrity are critical (ACID)
 - database size \(\approx 100\text{MB-GB} \)
Analytical processing

On Line Analytical Processing (OLAP)
- Decision support applications

Characterized by
- "historical" data
- consolidated, integrated data
- ad hoc applications
- read access to millions of records
- complex queries
- consistency before and after periodical loads
- database size \approx 100GB-TB

Course content

First part (weeks 1-7)
- DBMS server technology
- SQL Triggers
- Distributed databases

Second part (weeks 8-14)
- Data warehouse design
- OLAP analysis
- Data mining
Books

Course books
- Tan, Steinbach, Kumar, *Introduction to data mining*, Pearson, 2006

Other books
- Kimball e altri, *several books and white papers on data warehouse design methodologies and case studies*, Wiley
- Han, Kamber, *Data mining: concepts and techniques*, Morgan Kaufmann, 2006
Data Base Management System (DBMS)
- A software package designed to store and manage databases
- We are interested in internal mechanisms of a DBMS providing services to applications
 - Useful for making the right design choices
 - System configuration
 - Physical design of applications
 - Some services are becoming available also in operating systems
Optimizer

- It selects the appropriate execution strategy for accessing data to answer queries
- It receives in input a SQL instruction (DML)
- It executes lexical, syntactic, and semantic parsing and detects (some) errors
- It transforms the query in an internal representation (based on relational algebra)
- It selects the “right” strategy for accessing data

This component guarantees the data independence property in the relational model.

Access Method Manager

- It performs physical access to data
- It implements the strategy selected by the optimizer
DBMS Components

- **Buffer Manager**
 - It manages page transfer from disk to main memory and vice versa.
 - It manages the main memory portion that is pre-allocated to the DBMS.
 - e.g., Oracle SGA
 - The memory block pre-allocated to the DBMS is *shared* among many applications.

- **Concurrency Control**
 - It manages concurrent access to data.
 - Important for write operations.
 - It guarantees that applications do not interfere with each other, thus yielding consistency problems.
Reliability Manager
- It guarantees correctness of the database content when the system crashes
- It guarantees atomic execution of a transaction (sequence of operations)
- It exploits auxiliary structures (log files) to recover the correct database state after a failure

Transaction
- A transaction is a logical unit of work performed by an application
 - It is a sequence of one or more SQL instructions, performing read and write operations on the database
- It is characterized by
 - Correctness
 - Reliability
 - Isolation
Transaction example: Bank Transfer

- The following transaction moves 100 euro from account xxx to account yyy

```
UPDATE ACCOUNTS
SET Balance = Balance - 100
WHERE Account_Number = XXX

UPDATE ACCOUNTS
SET Balance = Balance + 100
WHERE Account_Number = YYY
```

Transaction delimiters

- **Transaction start**
 - Typically implicit
 - First SQL instruction
 - At the beginning of a program
 - After the end of the former transaction

- **Transaction end**
 - **COMMIT**: correct end of a transaction
 - **ROLLBACK**: end with error
 - The database state goes back to the state at the beginning of the transaction
Transaction end

- 99.9% of transactions commit
- Remaining transactions rollback
 - Rollback is required by the transaction (suicide)
 - Rollback is required by the system (murder)

Transaction properties

ACID properties of transactions

- Atomicity
- Consistency
- Isolation
- Durability
Atomicity

▷ A transaction cannot be divided in smaller units
 - It is not possible to leave the database in an intermediate state of execution

▷ Guaranteed by
 - **Undo.** The system undoes all the work performed by the transaction up to the current point
 - It is used for rollback
 - **Redo.** The system redoes all work performed by committed transactions
 - It is used to guarantee transaction commit in presence of failure

Consistency

▷ A transaction execution should not violate integrity constraints on a database
 - Enforced by defining integrity constraints in the database schema (Create table,)
 - Primary key
 - Referential Integrity (Foreign key)
 - Domain Constraints
 - ...
 - When a violation is detected, the system may
 - Rollback the transaction
 - Automatically correct the violation
Isolation

- The execution of a transaction is *independent* of the concurrent execution of other transactions
 - Enforced by the Concurrency Control block of the DBMS

Durability

- The effect of a committed transaction *is not lost* in presence of failures
 - It guarantees the reliability of the DBMS
 - Enforced by the Reliability Manager block of the DBMS