Database Management Systems

Database Management Systems

Physical Access to Data

Physical access to data

CONCURRENCY CONTROL

| BUFFER MANAGER F_.l RELIABILITY MANAGEMENT |

Index Files ¢ System DATABASE
DataFiles «—— Catalog

Physical Access Structures

Access Method Manager

2> Data may be stored on disk in different formats
to provide efficient query execution
@ Different formats are appropriate for different
query needs
> Physical access structures describe how data is
stored on disk

NG

2> Transforms an access plan generated by the
optimizer into a sequence of physical access
requests to (database) disk pages
® It exploits access methods
2> An access method is a software module
® Tt is specialized for a single physical data structure
@ It provides primitives for
® reading data
® writing data

Access method

2> Selects the appropriate blocks of a file to be
loaded in memory

2> Requests them to the Buffer Manager
2> Knows the organization of data into a page
@ can find specific tuples and values inside a page

pfe °

Elena Baralis, Silvia Chiusano ag. 1
Politecnico di Torino

Organization of a disk page

2 Different for different access methods
® Divided in
® Space available for data

® Space reserved for access method control
information

® Space reserved for file system control information

Elena Baralis, Silvia Chiusano
Politecnico di Torino

2> Tuples may have varying size
® Varchar types
® Presence of Null values
2> A single tuple may span several pages
@ \When its size is larger than a single page
® e.g., for BLOB or CLOB data types

Physical Access Structures

2> Physical access structures describe how data is

stored on disk to provide efficient query

execution

@ SQL select, update, ...
2> In relational systems
® Physical data storage

® Sequential structures

® Hash structures
® Indexing to increase access efficiency

® Tree structures (B-Tree, B+-Tree)

® Unclustered hash index

® Bitmap index 9

p8e

Heap file

2> Tuples are sequenced in /insertion order

@ insert is typically an append at the end of the file
> Allthe space in a block is completely exploited

before starting a new block

2> Delete or update may cause wasted space

® Tuple deletion may leave unused space

® Updated tuple may not fit if new values have larger size
2> Sequential reading/writing is very efficient
2> Frequently used in relational DBMS

® jointly with unclustered (secondary) indices to support
search and sort operations

p8e

Database Management Systems

Database Management Systems

Physical access to data

Physical Access Structures

D

NG

Sequential Structures

2> Tuples are stored in a given sequential order
2> Different types of structures implement different
ordering criteria
2> Available sequential structures
@ Heap file (entry sequenced)
@ Ordered sequential structure

10

Ordered sequential structures

2> The order in which tuples are written depends on
the value of a given key, called sort key
@ A sort key may contain one or more attributes
@ the sort key may be the primary key
2> Appropriate for
® Sort and group by operations on the sort key
® Search operations on the sort key
@ Join operations on the sort key
® when sorting is used for join

12

Pag. 2

Database Management Systems Physical access to data

~

Ordered sequential structures Ordered sequential structures

2> Problem 2 Typically used with B+-Tree clustered (primary)
® preserving the sort order when inserting new indices
tuples

@ the index key is the sort key

2> Used by the DBMS to store intermediate
operation results

® it may also hold for update
2> Solution
® |eaving a percentage of free space in each block
during table creation
@ On insertion, dynamic (re)sorting in main memory of
tuples into a block
2> Alternative solution
® Overflow file containing tuples which do not fit into
the correct block
p8e L bBe 1

Tree structures General characteristics

2> Provide “direct” access to data based on the 2> One root node
value of a key field
@ The key includes one or more attributes
2> It does not constrain the physical position of
tuples
2> The most widespread in relational DBMS

DE\G 15 D‘\BAG 16

Tree structure General characteristics

2> One root node
T 1 T 2> Many intermediate nodes
2> Nodes have a large fan-out
@ Each node has many children
DE\G 17 D‘\BAG 18

Elena Baralis, Silvia Chiusano ;

. . .) ag. 3
Politecnico di Torino :

Database Management Systems Physical access to data

General characteristics

2> One root node
2> Many intermediate nodes
U1
JEN TN 2> Nodes have a large fan-out
@ Each node has many children
2> Leaf nodes provide access to data

[T 1] ® Clustered
@ Unclustered

N

p8e B bBe 20

B-Tree and B*-Tree

2> Two different tree structures for indexing

® B-Tree
II-!-I ® Data pages are reached only through key values by
visiting the tree
® B+-Tree

® Provides a link structure allowing sequential access
]]] ‘ in the sort order of key values

N

DATA

p8e & bBe 2

DATA DATA

p8e = bBe 2

Elena Baralis, Silvia Chiusano
. . . . Pag 4
Politecnico di Torino

Database Management Systems Physical access to data

Clustered
2> Two different tree structures for indexing 2> The tuple is contained into the leaf node
® B-Tree ® Constrains the physical position of tuples in a
® Data pages are reached only through key values by given leaf node
visiting the tree ® The position may be modified by splitting the node,
® B+-Tree when it is full
® Provides a link structure allowing sequential access @ Also called key sequenced
on the sort arder of key values D Typically used for primary key indexing

2> B stands for balanced
® |eaves are all at the same distance from the root

@ Access time is constant, regardless of the searched
value

DE\G 25 D‘\BAG 26

Clustered B+-Tree index ’ Unclustered

2> The leaf contains physical pointers to actual data
® The position of tuples in a file is totally

Il-!-l unconstrained
@ Also called indirect

/H U1 1T 1] 2> Used for secondary indices
[Towe[Towe [}—{ [owe] Towe]

DE\G 27 D‘\BAG 28

STUDENT (Studentld, Name, Grade)

L [0 [omere
Crade <12 12 <= Grade <= 78
NI
19
12<=Grade <19 56< Grade <=78
19 <= Grade <= 56

[T
/ <= <

H H ll ‘ H H Li:F 22 30 30 33 34 34 34 40 50

| | U

Vi bbbl

l l l T (12) (13 (T4 (T5) (T6) (T10) (T7) (T8) (T9)

pe

i H H R N
ITL!T6 1T | o< S H
119134 1 34 1 11221300 331 1
[t} i i [] [
[' ' T [

DE\G 29

DATA FILE FOR STUDENT TABLE

Elena Baralis, Silvia Chiusano pag. &
Politecnico di Torino

Database Management Systems

Example: Clustered B*-Tree index

STUDENT (Studentld, Name, Grade)

I [
Grade <12 12 <= Grade <= 78
12<=Grade < 19 !lﬂl 56< Grade <=78
19 <= Grade <= 56

19 <= Grade < 33 44< Grade <= 56
33 <= Grade <= 44
LEAF
T T T —

R
TLT20 T3
S
191221 130
L

Lz
1301
0

t

DATA FILE FOR STUDENT TABLE

Hash structure

> It guarantees direct and efficient access to data
based on the value of a key field
@ The hash key may include one or more attributes

2> Suppose the hash structure has B blocks

® The hash function is applied to the key field value
of a record

® It returns a value between 0 and B-1 which defines
the position of the record

@ Blocks should never be completely filled
® To allow new data insertion

33

p8e

Hash index

2> Advantages

® Very efficient for queries with equality predicate on
the key

@ No sorting of disk blocks is required
2> Disadvantages

® Inefficient for range queries

@ Collisions may occur

35

Physical access to data

~

Advantages and

disadvantages

2> Advantages
® \ery efficient for range queries

@ Appropriate for sequential scan in the order of the
key field

® Always for clustered, not guaranteed otherwise
> Disadvantages
® Insertions may require a split of a leaf
® possibly, also of intermediate nodes
® computationally intensive

@ Deletions may require merging uncrowded
nodes and re-balancing

32

D

NG

Example: hash index

STUDENT (Studentld, Name, Grade)

BrocKo |:|
T150
BLOCK 1 1475

TUPLE T1 —— pj(Studentld =50)=1
Studentid = 50

TUPLET4 5 ysuudentid =75)=1
Studentid = 75 R BLOCK 2

DATA FILE FOR STUDENT TABLE

34

p8e

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Unclustered hash index

2> It guarantees direct and efficient access to data
based on the value of a key field
@ Similar to hash index
2> Blocks contain pointers to data
® Actual data is stored in a separate structure
@ Position of tuples is not constrained to a block
@ Different from hash index

36

Pag. 6

Database Management Systems Physical access to data

~

Example: Unclustered hash index Bitmap index

STUDENT (Studentld, Name, Grade)

2> It guarantees direct and efficient access to data
|:| based on the value of a key field
BLocko |:| @ [t is based on a bit matrix

GRADE =30 HGRADE=30)=1 — /' 3> The bit matrix references data rows by means of
> sooc | 61 RIDs (Row IDentifiers)

TUPLE T2

SRADE 40— H(GRADE=40)=1 240 ® Actual data is stored in a separate structure
srockz |:| @ Position of tuples is not constrained

DATA FILE FOR

INDEX BLOCKS STUDENT TABLE

DE\G 37 D‘\BAG 38

Bitmap index -~ Example: Bitmap index
EMPLOYEE (Employeeld, Name, Job)
P The blt matriX has Domain of Job attribute = {Engineer, Consultant, Manager, Programmer, Secretary, Accountant}
® One column for each different value of the indexed
attribute
0 0 0
@ One row for each tuple g 1 g |:|
2> Position (i, j) of the matrix is 2 1 g
® 1if tuple i takes valuej TV Tvan T Tvan ol
® 0 otherwise 1 0 0) 1 9
2 0| o 0
o]
4 | 1] o 0
5 0 1 0 DATAFILE
FOR EMPLOYEE
TABLE
p8e & bBe 0

Bitmap index

2> Advantages
® Very efficient for boolean expressions of predicates
@ Reduced to bit operations on bitmaps

® Appropriate for attributes with limited domain
cardinality

2> Disadvantages
® Not used for continuous attributes

® Required space grows significantly with domain
cardinality

DE\G 41

Elena Baralis, Silvia Chiusano

. . .] Pag. 7
Politecnico di Torino :

