Data mining: clustering

What is Cluster Analysis?
- Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis
- Understanding
 - Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations
- Summarization
 - Reduce the size of large data sets

Notion of a Cluster can be Ambiguous
- How many clusters?
- Six Clusters
- Two Clusters
- Four Clusters

Types of Clusterings
- A **clustering** is a set of clusters
- Important distinction between **hierarchical** and **partitional** sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering
- Original Points
- A Partitional Clustering
Data mining: clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Types of Clusters
- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters
- Property or Conceptual
- Described by an Objective Function

Types of Clusters: Well Separated
- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

Types of Clusters: Center-Based
- Center-based
 - A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
 - The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

Types of Clusters: Contiguity-Based
- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.
Data mining: clustering

Types of Clusters: Density-Based

- Density-based
 - A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
 - Used when the clusters are irregular or intertwined, and when noise and outliers are present.

![6 density-based clusters](image)

Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that share some common property or represent a particular concept.

![2 Overlapping Circles](image)

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

![K-means Clustering](image)

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don’t change

![K-means Clustering – Details](image)

K-means Clustering – Details

- Initial centroids are often chosen randomly.
- Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- ‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to ‘Until relatively few points change clusters’
- Complexity is \(O(n \times K \times I \times d)\)
 - \(n = \) number of points, \(K = \) number of clusters, \(I = \) number of iterations, \(d = \) number of attributes

![Two different K-means Clusterings](image)
Data mining: clustering

Importance of Choosing Initial Centroids

For each point, the error is the distance to the nearest cluster.

Evaluating K-means Clusters

Most common measure is Sum of Squared Error (SSE)
- For each point, the error is the distance to the nearest cluster
- To get SSE, we square these errors and sum them.

\[
SSE = \sum_{i=1}^{n} \sum_{x \in C_i} dist^2 (m_i, x)
\]
- \(x\) is a data point in cluster \(C_i\) and \(m_i\) is the representative point for cluster \(C_i\)
- can show that \(m_i\) corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase \(K\), the number of clusters
 - A good clustering with smaller \(K\) can have a lower SSE than a poor clustering with higher \(K\)

10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters
Data mining: clustering

10 Clusters Example

Iteration 4

Starting with two initial centroids in one cluster of each pair of clusters

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

10 Clusters Example

Iteration 4

Starting with some pairs of clusters having three initial centroids, while other have only one.

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

10 Clusters Example

Iteration 2

Starting with some pairs of clusters having three initial centroids, while other have only one.

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Handling Empty Clusters

- Basic K-means algorithm can yield empty clusters
- Several strategies
 - Choose the point that contributes most to SSE
 - Choose a point from the cluster with the highest SSE
 - If there are several empty clusters, the above can be repeated several times.

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated
- Postprocessing
- Bisecting K-means
- Not as susceptible to initialization issues

Pre-processing and Post-processing

- Pre-processing
 - Normalize the data
 - Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are 'close' and that have relatively low SSE
 - Can use these steps during the clustering process

Elena Baralis, Tania Cerquitelli
Politecnico di Torino
Bisecting K-means

- Bisecting K-means algorithm
 - Variant of K-means that can produce a partitional or a hierarchical clustering

1. Initialize the list of clusters to contain the cluster containing all points.
2. repeat
3. Select a cluster from the list of clusters
4. for i = 1 to number of iterations do
5. Bisect the selected cluster using basic K-means
6. end for
7. Add the two clusters from the bisection with the lowest SBC to the list of clusters.
8. until Until the list of clusters contains K clusters

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

- K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)
Data mining: clustering

Overcoming K-means Limitations

One solution is to use many clusters, but need to put together.

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
 - Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Elena Baralis, Tania Cerquitelli
Politecnico di Torino
Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 1. Compute the proximity matrix
 2. Let each data point be a cluster
 3. **Repeat**
 1. Merge the two closest clusters
 2. Update the proximity matrix
 4. **Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

- Start with clusters of individual points and a proximity matrix

Intermediate Situation

- After some merging steps, we have some clusters

Intermediate Situation

- We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

After Merging

- The question is "How do we update the proximity matrix?"

How to Define Inter-Cluster Similarity

- **MIN**
- **MAX**
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward’s Method uses squared error
Data mining: clustering

How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
- Determined by one pair of points, i.e., by one link in the proximity graph.

<table>
<thead>
<tr>
<th></th>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>I4</th>
<th>I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>1.00</td>
<td>0.90</td>
<td>0.10</td>
<td>0.65</td>
<td>0.26</td>
</tr>
<tr>
<td>I2</td>
<td>0.90</td>
<td>1.00</td>
<td>0.70</td>
<td>0.60</td>
<td>0.50</td>
</tr>
<tr>
<td>I3</td>
<td>0.10</td>
<td>0.70</td>
<td>1.00</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>I4</td>
<td>0.65</td>
<td>0.60</td>
<td>0.40</td>
<td>1.00</td>
<td>0.80</td>
</tr>
<tr>
<td>I5</td>
<td>0.20</td>
<td>0.50</td>
<td>0.30</td>
<td>0.80</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Hierarchical Clustering: MIN

Nested Clusters

Dendogram
Data mining: clustering

Strength of MIN
- Can handle non-elliptical shapes

Limitations of MIN
- Sensitive to noise and outliers

Cluster Similarity: MAX or Complete Linkage
- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
- Determined by all pairs of points in the two clusters

Hierarchical Clustering: MAX
- Nested Clusters Dendrogram

Strength of MAX
- Less susceptible to noise and outliers

Limitations of MAX
- Tends to break large clusters
- Biased towards globular clusters

Elena Baralis, Tania Cerquitelli
Politecnico di Torino
Cluster Similarity: Group Average

- Proximity of two clusters is the average of pairwise proximity between points in the two clusters.
 \[\text{proximity(Cluster}_i, \text{Cluster}_j) = \frac{1}{|\text{Cluster}_i| \cdot |\text{Cluster}_j|} \sum_{p \in \text{Cluster}_i} \sum_{p' \in \text{Cluster}_j} \text{proximity}(p, p') \]
- Need to use average connectivity for scalability since total proximity favors large clusters

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>1.00</td>
<td>0.90</td>
<td>0.10</td>
<td>0.65</td>
</tr>
<tr>
<td>I2</td>
<td>0.90</td>
<td>1.00</td>
<td>0.70</td>
<td>0.60</td>
</tr>
<tr>
<td>I3</td>
<td>0.10</td>
<td>0.70</td>
<td>1.00</td>
<td>0.40</td>
</tr>
<tr>
<td>I4</td>
<td>0.65</td>
<td>0.60</td>
<td>0.40</td>
<td>1.00</td>
</tr>
<tr>
<td>I5</td>
<td>0.20</td>
<td>0.50</td>
<td>0.30</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Hierarchical Clustering: Group Average

- Compromise between Single and Complete Link

Strengths
- Less susceptible to noise and outliers

Limitations
- Biased towards globular clusters

Cluster Similarity: Ward’s Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
 - Less susceptible to noise and outliers
 - Biased towards globular clusters
 - Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Time and Space requirements

- \(O(N^2) \) space since it uses the proximity matrix.
 - \(N \) is the number of points.

- \(O(N^3) \) time in many cases
 - There are \(N \) steps and at each step the size, \(N^2 \), proximity matrix must be updated and searched
 - Complexity can be reduced to \(O(N^2 \log(N)) \) time for some approaches
DBSCAN

- **DBSCAN** is a density-based algorithm
 - Density = number of points within a specified radius (Eps)
 - A point is a **core point** if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A **border point** has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A **noise point** is any point that is not a core point or a border point.

DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points

```plaintext
for all core points do
    if the core point has no cluster label then
        Label the current core point with cluster label current_cluster_label
    end if
    for all points in the Eps-neighborhood, except the point itself do
        if the point does not have a cluster label then
            Label the point with cluster label current_cluster_label
        end if
    end for
end for
```

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

- Varying densities
- High-dimensional data
DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance.
- Noise points have the kth nearest neighbor at farther distance.
- So, plot sorted distance of every point to its kth nearest neighbor.

Measures of Cluster Validity

- The validation of clustering structures is the most difficult task.
- To evaluate the "goodness" of the resulting clusters, some numerical measures can be exploited.
- Numerical measures are classified into two main classes:
 - **External Index**: Used to measure the extent to which cluster labels match externally supplied class labels. Depending on this evaluation, different indices are calculated, for example, entropy, purity.
 - **Internal Index**: Used to measure the goodness of a clustering structure without respect to external information. Depending on this evaluation, different indices are calculated, for example, Sum of Squared Error (SSE), cluster cohesion, cluster separation, Rand-Index, adjusted rand-index.

External Measures of Cluster Validity: Entropy and Purity

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Entropy</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

External measures for clustering entropy and purity.

Internal Measures: Cohesion and Separation

Cluster Cohesion

Measures how closely related are objects in a cluster:

- Cohesion is measured by the within cluster sum of squares (SSE):
 \[
 WSS = \sum_{i=1}^{C} \sum_{x \in C_i} (x - m_i)^2
 \]

Cluster Separation

Measures how distinct or well-separated a cluster is from other clusters:

- Separation is measured by the between cluster sum of squares:
 \[
 BSS = \sum_{i=1}^{K} \sum_{x \notin C_i} \|m - m_i\|^2
 \]

Internal Measures: Cohesion and Separation

- A proximity graph based approach can also be used for cohesion and separation.
- Cluster cohesion is the sum of the weight of all links within a cluster.
- Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

Final Comment on Cluster Validity

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis. Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."