Database Management Systems

Physical Design

Database Management Systems

Physical design

Phases of database design

Application
re(?l'n’lremen q> Co(r;ceptual
esngn

Conceptual schema q%%

ER or UML

Logical
design

i ﬁ Physical
Relatuonal WV
tables

Physical schema E

il

PhyS|caI design

Physical design: Inputs

¥ Goal

® Providing good performance for database
applications

2 Application software is not affected by physical
design choices
® Data independence
¥ It requires the selection of the DBMS product
® Different DBMS products provide different
® storage structures
® access techniques

pBe

2> Logical schema of the database

2> Features of the selected DBMS product
® e.g., index types, page clustering

2> Workload
® Important queries with their estimated frequency
® Update operations with their estimated frequency

® Required performance for relevant queries and
updates

il

Physical deS|gn. Outputs

2 Physical schema of the database
® table organization, indices

2> Set up parameters for database storage and
DBMS configuration

® e.g., initial file size, extensions, initial free space,
buffer size, page size

® Default values are provided

pBe

2> Physical file organization
® unordered (heap)
® ordered (clustered)
® hashing on a hash-key
® clustering of several relations

® Tuples belonging to different tables may be
interleaved

il

Elena Baralis, Silvia Chiusano

Politecnico di Torino Pag. 1

Database Management Systems

2 Indices
® different structures
® e.g., B*-Tree, hash
® clustered (or primary)
® Only one index of this type can be defined
® unclustered (or secondary)
® Many different indices can be defined

pBe

Characterization of the workload

>> For each query
® accessed tables
® visualized attributes
® attributes involved in selections and joins
® selectivity of selections

2 For each update
® attributes and tables involved in selections
® selectivity of selections

® update type (Insert / Delete / Update) and
updated attributes (if any)

il

Selection of data structures

2 Selection of
® physical storage of tables
® indices
2 For each table
® file structure
® heap or clustered
® attributes to be indexed
® hash or B*-Tree
® clustered or unclustered

pBe

Selection of data structures

2> Changes in the logical schema

® alternatives which preserve BCNF (Boyce Code
Normal Form)

® alternatives not preserving BCNF
® e.g., in data warehouses
® partitioning on different disks

10

il

Physical design strategies

2> No general design methodology is available
® trial and error design process
® general criteria
® “common sense” heuristics
2 Physical design may be improved after
deployment
® database tuning

1

pBe

G

eneral criteria

2> The primary key is usually exploited for selections
and joins
® index on the primary key

® clustered or unclustered, depending on other design
constraints

12

il

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Pag. 2

Physical design

Database Management Systems

> Add more indices for the most common query
predicates
® Select a frequent query
® Consider its current evaluation plan
® Define a new index and consider the new
evaluation plan
® if the cost improves, add the index
® Verify the effect of the new index on
® modification workload
® available disk space

Physical design

Heuristics

2> Never index smalltables
® |oading the entire table requires few disk reads
2> Never index attributes with /ow cardinality
domains
® low selectivity
® e.g., gender attribute
® not true in data warehouses

® different workloads and exploitation of bitmap
indices

D‘%\G 14

Heuristics

¥ For attributes involved in simple predicates of a
where clause
® Equality predicate
® Hash is preferred
® B*-Tree
® Range predicate
® B*-Tree
2> Evaluate if using a clustered index improves in
case of slow queries

Heuristics

2> For where clauses involving many simple
predicates
® Multi attribute (composite) index
® Select the appropriate key order

® the order of attributes affects the usability of the
index

2> Evaluate maintenance cost

D‘%\G 16

Heuristics

2> To improve joins
® Nested loop
® Index on the /nner table join attribute
® Merge scan
® B*-Tree on the join attribute (if possible, clustered)

DB\G 17

Heuristics

2> For group by
® Index on the grouping attributes
® Hash index or B*-tree
2> Consider group by push down
@ anticipation of group by with respect to joins
® not available in all systems
® observe the execution plan

D‘%G 18

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Pag. 3

Database Management Systems

Example: Group by push down

2> Tables
PRODUCT (Prod#, PName, PType, PCategory)
SHOP (Shop#, City, Province, Region, State)
SALES (Prod#, Shop#, Date, Qty)

2 SQL query

SELECT PType, Province, SUM (Qty)
FROM Sales S, Shop SH, Product P
WHERE S.Shop# = SH.Shop#

AND S.Prod# = P.Prod#

AND Region ='Piemonte”

GROUP BY PType, Province;

Physical design

Example: Initial query tree

GROUP BY PType, Province

/ >
GROUP BY Prod#, Province —(\l

<] PRODUCT

GRegion = ‘Piemonte’

SHOP SALES

D‘%\G 20

Example: Rewritten query tree (1)

GROUP BY PType, Province
K > \|
GROUP BY Prod#, Province PRODUCT
Opan: ’ GROUP BY Prod#, Shop#
Region = ‘Piemonte’

SHOP SALES

Example: Rewritten query tree (2)

GROUP BY PType, Province
K > \l
GROUP BY Prod#, Province PRODUCT
ok
GRegion = ‘Piemonte’ GROUP BY Prod#, Shop#

SHOP SALES

D&G 22

If it does not work?

2> Query execution is not as fast as you expect
® or you are not satisfied yet

2> Remember to update database statistics!

2 Database tuning

® Add and remove indices
® May be performed also after deployment
2> Techniques to affect the optimizer decision
® Should almost never be used
® called hints in oracle
® Data independence is /ost

DB\G 23

Database Management Systems

Physical Design Examples

DE/\G 24

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Pag. 4

Database Management Systems

Physical design

Example 1

2 Tables
® EMP (Emp#, EName, Dept#, Salary, Age, Hobby)
® DEPT (Dept#, DName, Mgr)
® In EMP
Dept# FOREIGN KEY REFERENCES DEPT.Dept#

® In DEPT
Mgr FOREIGN KEY REFERENCES EMP.Emp#

25

pBe

2> SQL query

SELECT *
FROM EMP
WHERE Salary/12 = 1500;

2> Index on the salary attribute (B*-Tree)
® The index may be disregarded because of the
arithmetic expression

26

il

Example 2

2> SQL query

SELECT *
FROM EMP
WHERE Salary = 18000;

2> The index is used but it does not provide any
benefit
® Consider Salary data distribution
® The value is very frequent and index access is not
appropriate

Example 3

2> Suppose that table EMP has block factor
(number of tuples per block) equal to 30
a) Card(DEPT)= 50
b) Card(DEPT) = 2000
For accessing Dept# in the EMP table, would
you define a secondary index on Emp.Dept#?

28

pBe

il

Example 3

2> Case A: Card (DEPT) = 50
® Indexing is not appropriate
® Fach page on average contains almost all
departments
® sequential scan is better
2O Case B: Card(DEPT) = 2000
® Indexing is appropriate
® Each page contains tuples belonging to few
departments

Example 4

2> SQL query
SELECT EName, Mgr
FROM EMP E, DEPT D
WHERE E.Dept# = D.Dept#
AND DName = ‘Toys’;

2> Index definition
® Hash Index on DName for the selection condition
® Hash Index on Emp. Dept# for a nested loop with
Emp as inner table
30

pfe 29 icle
Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 5

Database Management Systems

Example 5

¥ SQL query

SELECT EName, Mgr

FROM EMP E, DEPT D
WHERE E.Dept# = D.Dept#
AND DName = ‘Toys’

AND Age=25;

¥ Index definition

® An index on Age may be considered
® it depends on the selectivity of the condition

D‘\B/\G 31

Physical design

Example 6
2> SQL query
SELECT EName, Mgr
FROM EMP E, DEPT D
WHERE E.Dept# = D.Dept#
AND Salary BETWEEN 10000 AND 12000
AND Hobby="Tennis’;
D‘%\G 32

Example 6: selection

2 Alternatives for the selection on EMP
® hash index on Hobby
® B*-Tree on Salary

2 Usually equality predicates are more selective

> One index is always considered by the optimizer
2O Two indices may be exploited by smart

optimizers
® compute the intersection of RIDs before reading
tuples
D‘\B/\G 33

Example 6: join

2> Alternatives for join
® Hash join
® Nested loop
® EMP outer
® because of selection predicates
® DEPT inner
@ plus index on DEPT.Dept#
not appropriate if DEPT table is very small

D‘%\G 34

Example 7
2> SQL query
SELECT Dept#, Count(*)
FROM EMP
WHERE Age>20
GROUP BY Dept#
DB\G 35

Example 7

2> If the selection condition on Age is not very
selective
® o B*-Tree on Age
2> For group by
® Clustered index on Dept#

® Avoids sorting and reads blocks ready for group by
® Good!
® Secondary index on Dept#
® May cause too many reads
® Consider if appropriate

D&G 36

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Pag. 6

Database Management Systems Physical design

Example 8

Example 8

2 SQL query 3> Unclustered (secondary) index on Dept#
® It avoids reading table EMP
2> It is a covering index
® it answers the query without requiring access to
table data

SELECT Dept#, COUNT(*)
FROM EMP
GROUP BY Dept#

38

pgc ¥ DB

Example 10

Example 9

¥ SQL query 2> SQL query
SELECT Mgr SELECT AVG(Salary)

FROM DEPT, EMP FROM EMP

WHERE DEPT.Dept#=EMP.Dept# WHERE Age = 25
AND Salary BETWEEN 3000 AND 5000

> Unclustered index on EMP.Dept#
® [t avoids reading table EMP

40

pfe * pfe

Example 10

L Composite index on <Age,Salary>
@ Fastest solution
® This order is the best if the condition on Age is
more selective

2 Issues in composite indices
® Order of the fields in a composite index is
important
® Update overhead grows

41

pBe

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 7

