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(¢ Available OLAP functions
= Computation windows
= window
= Ranking functions
= rank, dense rank, ...

= Group by clause extensions
= rollup, cube, ...
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;; Physical aggregation example

= Example table
= SALES(City, Date, Amount)

= Analyze the amount and the average
amount over the current and the
previous two rows
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‘;fi Physical aggregation example
SELECT Date, Amount,
AVG(Amount) OVER (
ORDER BY Date
ROWS 2 PRECEDING
) AS MovingAverage
FROM Sales

ORDER BY Date;
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‘f;f:. Logical aggregation example
= Example table

= SALES(City, Date, Amount)

= Select for each date the amount and the
average amount over the current row
and the sales of the two previous days
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;*‘"“}‘iéu""f:g - -
;Q Logical aggregation example
SELECT Date, Amount,
AVG(Amount) OVER (
ORDER BY Date

RANGE BETWEEN INTERVAL ‘2’
DAY PRECEDING AND CURRENT ROW

) AS Last3DaysAverage
FROM Sales
ORDER BY Date;
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;Z_ Example tables

= Schema
= SUPPLIERS(Cod_S, Name, SLocation )
« ITEM(Cod_1I, Type, Color, Weight)
= PROJECTS(Cod_P, Name, PLocation)
= FACTS(Cod_S, Cod 1, Cod_ P, SoldAmount)
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f Ranking example

= Select for each item the total amount sold
and the ranking according to the total
amount sold
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; Ranking example

SELECT COD_I, SUM(SoldAmount),
RANK() OVER (
ORDER BY SUM(SoldAmount)
) AS SalesRank
FROM Facts
GROUP BY COD_I;
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i Ranking example
2 300 1
I 1100 2
14 1300 3
16 1300 3
1 1900 5
13 4500 6
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i Dense ranking

SELECT COD_I, SUM(SoldAmount),
DENSE_RANK() OVER (
ORDER BY SUM(SoldAmount)
) AS DenseSalesRank
FROM Facts
GROUP BY COD_I;
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a“‘é’ Ranking example

fJ

I e
1 300 1
I5 1100 2
14 1300 3
16 1300 3
ol 1900 4
13 4500 5
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”E’ Double ranking
= Select for each item the code, the weight, the
total amount sold, the ranking according to
the weight and the ranking according to the

total amount sold
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*~2% Double ranking

SELECT Item.COD_I, Item.Weight,

RANK() OVER (ORDER BY Item.Weight

) AS WeightRank
RANK() OVER (ORDER BY SUM(SoldAmount)
) AS SalesRank

FROM Facts, Item

WHERE Facts.COD_I = Item.COD_I
GROUP BY Item.COD_I, Item.Weight

ORDER BY WeightRank;
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2% Double ranking

Il 12
15 12
14 14
12 17
I3 17
16 19

1900
1100
1300
300
4500

1300

1 5
1 2
3 3
4 1
4 6
6 3
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;5_;&‘#!:.-,,{% . .
;; Top N ranking selection

= Select
= the top two most sold items
= their code
= their weight
= the total amount sold

= and their ranking according to the total
amount sold
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‘;i Top N ranking selection

= Returning only the top two items can be
performed by nesting the ranking query
inside an outer query

= The outer query uses the nested ranking
query as a table (after the FROM clause)

= The outer query selects the requested values
of the rank field
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{501 Top N ranking selection

SELECT * FROM
(SELECT COD_I, SUM(SoldAmount),
RANK() OVER (ORDER BY SUM(SoldAmount))
AS SalesRank
FROM Facts
GROUP BY COD_I)
WHERE SalesRank<=2;

SUPPLIERS(Cod_S, Name, SLocation )
ITEM(Cod 1, Type, Color, Weight)
PROJECTS(Cod P, Name, PLocation)
FACTS(Cod S, Cod I, Cod P, SoldAmount)

D\%\G Oracle data warehousing - 19

Top N ranking selection

SELECT * FROM
(SELECT COD_I, SUM(SoldAmount),
RANK() OVER (ORDER BY SUM(SoldAmount))
AS SalesRank

FROM Facts
GROUP BY COD_I)
WHERE SalesRank<=2; I

Temporary table created at runtime
and dropped at the end of the outer query
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&) ROW_NUMBER

= ROW_NUMBER

= in each partition it assigns a progressive number
to each row

= Partition the items according to their type
and enumerate in progressive order the data
in each partition. In each partition the rows
are sorted according to the weight
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*i:_ ROW_NUMBER

SELECT Type, Weight, ROW_NUMBER OVER (
PARTITION BY Type
ORDER BY Weight
) AS RowNumberWeight

FROM Item;
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&) ROW_NUMBER

Bar 12 1 Partition 1
Gear 19 1 Partition 2
Screw 12 1 Partition 3
Screw 14 2
Screw 16 3
Screw 16 4
Screw 16 5
Screw 16 6
Screw 17 7
Screw 17 8
Screw 18 9
Screw 20 10
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{44} CUME_DIST

= CUME_DIST

= in each partition it assigns a weight between 0
and 1 to each row according to the number of
values which precede the value of the attribute
employed for the sorting in the partition

= Given a partition with N rows, for each row x
the CUME_DIST is computed as follows:

=« CUME_DIST(x) = number of values, which
precede or have the same value of the attribute
employed for the sorting, divided by N
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(&) CUME_DIST example

= Partition the items according to the type and sort in
each partition according to the weight of items.
Assign to each row the corresponding value of
CUME_DIST
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{44} CUME_DIST example

SELECT Type, Weight, CUME_DIST() OVER (
PARTITION BY Type
ORDER BY Weight
) AS CumeWeight

FROM Item;
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(¢! Example CUME_DIST

Bar 12 1 (=1/1) Partition 1
Gear 19 1 (=1/1) Partition 2
Screw 12 0.1 (=1/10) Partition 3
Screw 14 0.2 (=2/10)

Screw 16 0.6 (=6/10)
Screw 16 0.6 (=6/10)
Screw 16 0.6 (=6/10)
Screw 16 0.6 (=6/10)
Screw 17 0.8 (=8/10)
Screw 17 0.8 (=8/10)
Screw 18 0.9 (=9/10)
Screw 20 1 (=10/10)
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{4 NTILE

= NTILE(n)
= Allows splitting each partition in n subgroups (if it
is possible) containing the same number of

records. An identifier is associated to each
subgroup.
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;; NTILE example

= Partition the itames according to the type and split
each partition in 3 sub-gropus with the same
number of data. In each partition the rows are
ordered by the weight of items
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*f;; NTILE example
SELECT Type, Weight, NTILE(3) OVER (
PARTITION BY Type
ORDER BY Weight

) AS Ntile3Weight
FROM ITEM;
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4

! NTILE example

m RowNumberWeight
Bar 12 1

Partition 1
Gear 19 1 Partition 2
Screw 12 1 Partition 3
Screw 14 1 Subgroup 1
Screw 16 1
Screw 16 1
Screw 16 2
Screw 16 2 Subgroup 2
Screw 17 2
Screw 17 3
Screw 18 3 Subgroup 3
Screw 20 3
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Materialized views

Data Base and Dita Mining Group of Polite anico di Tariro
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;i Materialized views

= The result is precomputed and stored on the
disk

= They improve response times
= Aggregations and joins are precomputed

= Usually they are associated to queries with
aggregations

= They may be used also for non aggregating
queries

= Materialized views can be used as a table in
any query
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= The DBMS can change the execution of a
query to optimize performance
= Materialized views can be automatically

used by the DBMS without user
intervention

= Materialized views help answering queries very
similar to the query which created them
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(o

CREATE MATERIALIZED VIEW Name

[BUILD {IMMEDIATE|DEFERRED}]

[REFRESH {COMPLETE|FAST|FORCE|NEVER}
{ON COMMIT|ON DEMAND}]

[ENABLE QUERY REWRITE]

AS

uer

=4} Creating materialized views
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=0} Creating materialized views

s Name
= materialized view name

n QU@/’ %

= query associated to the materialized view

(i.e., query that creates the materialized
view)
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;5_;&‘#!:.-,,{% . . . .
;i Creating materialized views

= BUILD

=« IMMEDIATE

= creates the materialized view and
immediately loads the query results into the
view
= DEFERRED

= creates the materialized view but does not
immediately load the query results into the
view
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SER ] - .
;:. Creating materialized views

= REFRESH

=« COMPLETE

= recomputes the query result by executing the
query on all data

= FAST

= updates the content of the materialized view
using the changes since the last refresh
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;*‘"“}‘iéu""f:g g . e .
;Q Creating materialized views

= REFRESH

= FORCE
= when possible, the FAST refresh is performed

» otherwise the COMPLETE refresh is
performed

= NEVER

= the content of the materialized view is not
updated using Oracle standard procedures
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SER E—— . .
‘g Materialized views options

= ON COMMIT

= an automatic refresh is performed when
SQL operations affect the materialized view
content

= ON DEMAND

= the refresh is performed only upon explicit
request of the user issuing the command
« DBMS_MVIEW.REFRESH
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;Q Materialized views options
= ENABLE QUERY REWRITE

= enables the DBMS to automatically use the
materialized view as a basic block (i.e., a table)
to improve other queries performance

= available only in the high-end versions of DBMS
(e.g., not available in Oracle Express)

= when unavailable, the query must be rewritten by
the user to access the materialized view
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: Creation constraints

= Depending on the DBMS and the query, you
can create a materialized view associated to
the query if some constraints are satisfied
= constraints on the aggregating attributes
= constraints on the tables and the joins
= etc.
= you must be aware of the constraint existence!
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;:L Materialized view example

= Tables
= SUPPLIERS(Cod S, Name, SLocation )
« ITEM(Cod I, Type, Color)
= PROJECTS(Cod P, Name, PLocation)
=« FACTS(Cod S, Cod I, Cod P, Measure)
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: Materialized view example

= The materialized view query is
=« SELECT Cod_S, Cod_I, SUM(Measure)
FROM Facts
GROUP BY Cod_S, Cod_I;
= Options
« Immediate data loading
= Complete refresh only upon user request

= The DBMS can use the materialized view to
optimize other queries
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;il Materialized view example

CREATE MATERIALIZED VIEW Sup_Item_Sum
BUILD IMMEDIATE
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE
AS
SELECT Cod_S, Cod_I, SUM(Measure)
FROM Facts
GROUP BY Cod_S, Cod_I;
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= Requires proper structures to log changes to
the tables involved by the materialized view
query
= MATERIALIZED VIEW LOG
= there is a log for each table of a materialized
view
= each log is associated to a single table and some
of its attributes

= it stores changes to the materialized view table
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t“?g

;? Fast refresh

= The REFRESH FAST option can be used only
if the materialized view query satisfies some
constraints

= materialized view logs for the tables and
attributes of the query must exist

= when the GROUP BY clause is used, in the
SELECT statement an aggregation function
must be specified (e.g., COUNT, SUM, ...)

D\\/\G Oracle data warehousing - 47

,;_%v""‘}';‘?u""ti - - 5
‘;.i Materialized view log example

= Create a materialized view log
associated to the FACTS table, on
Cod_S, Cod_I and MEASURE attributes

= enable the options SEQUENCE and ROWID
= enable new values handling
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f Materialized view log example

CREATE MATERIALIZED VIEW LOG
ON Facts
WITH SEQUENCE, ROWID
(Cod_S, Cod_I, Measure)
INCLUDING NEW VALUES;

D\%\G Oracle data warehousing - 49

‘if; Example with fast refresh option

= The materialized view query is
=« SELECT Cod_S, Cod_I, SUM(Measure)
FROM Facts
GROUP BY Cod_S, Cod_I;
= Options
« Immediate data loading
= Automatic fast refresh

= The DBMS can use the materialized view to
optimize other queries
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%% Example with fast refresh option

72

CREATE MATERIALIZED VIEW LOG ON Facts
WITH SEQUENCE, ROWID (Cod_S, Cod_I, Measure)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW Sup_Item_Sum2
BUILD IMMEDIATE
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE
AS
SELECT Cod_S, Cod_I, SUM(Measure)
FROM Facts
GROUP BY Cod_S, Cod_I;
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{44! Fast refreshing materialized views

= The user or a system job can request the
materialized view update by issuing the
command
=« DBMS_MVIEW.REFRESH( 'view’, {'C7F?%})
= view:. name of the view to update

« 'C* COMPLETE refresh
« F* FAST refresh
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i’“ Fast refreshing materialized views

= Example

= COMPLETE refresh of the materialized view
“Sup_Item_Sum”

EXECUTE DBMS_MVIEW.REFRESH('Sup_Item_Sum’, ‘C");
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A Changing and deleting views

= Changing
= ALTER MATERIALIZED VIEW name
options,
= Deleting
= DROP MATERIALIZED VIEW name;
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;*‘"“}‘iéu""f:g o . e .
;.1 Analyzing materialized views

= The command
DBMS_MVIEW.EXPLAIN_MVIEW
allows the materialized view inspection
= refresh type
= operations on which the fast refresh is enabled
= query rewrite status (enabled, allowed, disabled)
= Errors
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SER .
‘4> Execution plan

-'Analyzing the execution plan of frequent
queries allows us to know whether
materialized views are used

= Query execution plans can be shown

= enabling the auto trace in
SQLPLUS> set autotrace on;

= clicking on the Explain link in the Oracle web
interface Results Explain Describe Saved SQL History

Query Plan

nnnnnnnnn
CT STATEMENT 5 1 14 65
HRSH GROUF BY 5 1 14 (-]
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