
1

Data warehousing in Oracle

Materialized views and SQL extensions
to analyze data in Oracle data warehouses

SQL extensions for data
warehouse analysis

2

Oracle data warehousing - 3DB
MG

Available OLAP functions

 Computation windows

 window

 Ranking functions

 rank, dense rank, ...

 Group by clause extensions

 rollup, cube, ...

Oracle data warehousing - 4DB
MG

Physical aggregation example

 Example table

 SALES(City, Date, Amount)

 Analyze the amount and the average
amount over the current and the
previous two rows

3

Oracle data warehousing - 5DB
MG

Physical aggregation example

SELECT Date, Amount,

AVG(Amount) OVER (

ORDER BY Date

ROWS 2 PRECEDING

) AS MovingAverage

FROM Sales

ORDER BY Date;

Oracle data warehousing - 6DB
MG

Logical aggregation example

 Example table

 SALES(City, Date, Amount)

 Select for each date the amount and the
average amount over the current row
and the sales of the two previous days

4

Oracle data warehousing - 7DB
MG

Logical aggregation example

SELECT Date, Amount,

AVG(Amount) OVER (

ORDER BY Date

RANGE BETWEEN INTERVAL „2‟
DAY PRECEDING AND CURRENT ROW

) AS Last3DaysAverage

FROM Sales

ORDER BY Date;

Oracle data warehousing - 8DB
MG

Example tables

 Schema

 SUPPLIERS(Cod_S, Name, SLocation)

 ITEM(Cod_I, Type, Color, Weight)

 PROJECTS(Cod_P, Name, PLocation)

 FACTS(Cod_S, Cod_I, Cod_P, SoldAmount)

5

Oracle data warehousing - 9DB
MG

Ranking example

 Select for each item the total amount sold
and the ranking according to the total
amount sold

Oracle data warehousing - 10DB
MG

Ranking example

SELECT COD_I, SUM(SoldAmount),

RANK() OVER (

ORDER BY SUM(SoldAmount)

) AS SalesRank

FROM Facts

GROUP BY COD_I;

6

Oracle data warehousing - 11DB
MG

Ranking example

COD_I SUM(SoldAmount) DenseSalesRank

I2 300 1

I5 1100 2

I4 1300 3

I6 1300 3

I1 1900 5

I3 4500 6

Oracle data warehousing - 12DB
MG

Dense ranking

SELECT COD_I, SUM(SoldAmount),

DENSE_RANK() OVER (

ORDER BY SUM(SoldAmount)

) AS DenseSalesRank

FROM Facts

GROUP BY COD_I;

7

Oracle data warehousing - 13DB
MG

Ranking example

COD_I SUM(SoldAmount) DenseSalesRank

I2 300 1

I5 1100 2

I4 1300 3

I6 1300 3

I1 1900 4

I3 4500 5

Oracle data warehousing - 14DB
MG

Double ranking

 Select for each item the code, the weight, the
total amount sold, the ranking according to
the weight and the ranking according to the
total amount sold

8

Oracle data warehousing - 15DB
MG

Double ranking

SELECT Item.COD_I, Item.Weight,

RANK() OVER (ORDER BY Item.Weight

) AS WeightRank

RANK() OVER (ORDER BY SUM(SoldAmount)

) AS SalesRank

FROM Facts, Item

WHERE Facts.COD_I = Item.COD_I

GROUP BY Item.COD_I, Item.Weight

ORDER BY WeightRank;

Oracle data warehousing - 16DB
MG

Double ranking

COD_I Weigh SUM(SoldAmount) WeightRank SalesRank

I1 12 1900 1 5

I5 12 1100 1 2

I4 14 1300 3 3

I2 17 300 4 1

I3 17 4500 4 6

I6 19 1300 6 3

9

Oracle data warehousing - 17DB
MG

Top N ranking selection

 Select

 the top two most sold items

 their code

 their weight

 the total amount sold

 and their ranking according to the total
amount sold

Oracle data warehousing - 18DB
MG

Top N ranking selection

 Returning only the top two items can be
performed by nesting the ranking query
inside an outer query

 The outer query uses the nested ranking
query as a table (after the FROM clause)

 The outer query selects the requested values
of the rank field

10

Oracle data warehousing - 19DB
MG

Top N ranking selection

SELECT * FROM

(SELECT COD_I, SUM(SoldAmount),

RANK() OVER (ORDER BY SUM(SoldAmount))

AS SalesRank

FROM Facts

GROUP BY COD_I)

WHERE SalesRank<=2;

SUPPLIERS(Cod_S, Name, SLocation)

ITEM(Cod_I, Type, Color, Weight)

PROJECTS(Cod_P, Name, PLocation)

FACTS(Cod_S, Cod_I, Cod_P, SoldAmount)

Oracle data warehousing - 20DB
MG

Top N ranking selection

Temporary table created at runtime

and dropped at the end of the outer query

SELECT * FROM

(SELECT COD_I, SUM(SoldAmount),

RANK() OVER (ORDER BY SUM(SoldAmount))

AS SalesRank

FROM Facts

GROUP BY COD_I)

WHERE SalesRank<=2;

11

Oracle data warehousing - 21DB
MG

ROW_NUMBER

 ROW_NUMBER

 in each partition it assigns a progressive number
to each row

 Partition the items according to their type
and enumerate in progressive order the data
in each partition. In each partition the rows
are sorted according to the weight

Oracle data warehousing - 22DB
MG

ROW_NUMBER

SELECT Type, Weight, ROW_NUMBER OVER (

PARTITION BY Type

ORDER BY Weight

) AS RowNumberWeight

FROM Item;

12

Oracle data warehousing - 23DB
MG

ROW_NUMBER

Type Weight RowNumberWeight

Bar 12 1 Partition 1

Gear 19 1 Partition 2

Screw 12 1 Partition 3

Screw 14 2

Screw 16 3

Screw 16 4

Screw 16 5

Screw 16 6

Screw 17 7

Screw 17 8

Screw 18 9

Screw 20 10

Oracle data warehousing - 24DB
MG

CUME_DIST

 CUME_DIST

 in each partition it assigns a weight between 0
and 1 to each row according to the number of
values which precede the value of the attribute
employed for the sorting in the partition

 Given a partition with N rows, for each row x
the CUME_DIST is computed as follows:

 CUME_DIST(x) = number of values, which
precede or have the same value of the attribute
employed for the sorting, divided by N

13

Oracle data warehousing - 25DB
MG

CUME_DIST example

 Partition the items according to the type and sort in
each partition according to the weight of items.
Assign to each row the corresponding value of
CUME_DIST

Oracle data warehousing - 26DB
MG

CUME_DIST example

SELECT Type, Weight, CUME_DIST() OVER (

PARTITION BY Type

ORDER BY Weight

) AS CumeWeight

FROM Item;

14

Oracle data warehousing - 27DB
MG

Example CUME_DIST

Type Weight RowNumberWeight

Bar 12 1 (=1/1) Partition 1

Gear 19 1 (=1/1) Partition 2

Screw 12 0.1 (=1/10) Partition 3

Screw 14 0.2 (=2/10)

Screw 16 0.6 (=6/10)

Screw 16 0.6 (=6/10)

Screw 16 0.6 (=6/10)

Screw 16 0.6 (=6/10)

Screw 17 0.8 (=8/10)

Screw 17 0.8 (=8/10)

Screw 18 0.9 (=9/10)

Screw 20 1 (=10/10)

Oracle data warehousing - 28DB
MG

NTILE

 NTILE(n)

 Allows splitting each partition in n subgroups (if it
is possible) containing the same number of
records. An identifier is associated to each
subgroup.

15

Oracle data warehousing - 29DB
MG

NTILE example

 Partition the itames according to the type and split
each partition in 3 sub-gropus with the same
number of data. In each partition the rows are
ordered by the weight of items

Oracle data warehousing - 30DB
MG

NTILE example

SELECT Type, Weight, NTILE(3) OVER (

PARTITION BY Type

ORDER BY Weight

) AS Ntile3Weight

FROM ITEM;

16

Oracle data warehousing - 31DB
MG

NTILE example

Type Weight RowNumberWeight

Bar 12 1 Partition 1

Gear 19 1 Partition 2

Screw 12 1 Partition 3

Screw 14 1 Subgroup 1

Screw 16 1

Screw 16 1

Screw 16 2

Screw 16 2 Subgroup 2

Screw 17 2

Screw 17 3

Screw 18 3 Subgroup 3

Screw 20 3

Materialized views

17

Oracle data warehousing - 33DB
MG

Materialized views

 The result is precomputed and stored on the
disk

 They improve response times
 Aggregations and joins are precomputed

 Usually they are associated to queries with
aggregations

 They may be used also for non aggregating
queries

 Materialized views can be used as a table in
any query

Oracle data warehousing - 34DB
MG

Query rewriting

 The DBMS can change the execution of a
query to optimize performance

 Materialized views can be automatically
used by the DBMS without user
intervention

 Materialized views help answering queries very
similar to the query which created them

18

Oracle data warehousing - 35DB
MG

Creating materialized views

CREATE MATERIALIZED VIEW Name

[BUILD {IMMEDIATE|DEFERRED}]

[REFRESH {COMPLETE|FAST|FORCE|NEVER}

{ON COMMIT|ON DEMAND}]

[ENABLE QUERY REWRITE]

AS

Query

Oracle data warehousing - 36DB
MG

Creating materialized views

 Name

 materialized view name

 Query

 query associated to the materialized view
(i.e., query that creates the materialized
view)

19

Oracle data warehousing - 37DB
MG

Creating materialized views

 BUILD

 IMMEDIATE

 creates the materialized view and
immediately loads the query results into the
view

 DEFERRED

 creates the materialized view but does not
immediately load the query results into the
view

Oracle data warehousing - 38DB
MG

Creating materialized views

 REFRESH

 COMPLETE

 recomputes the query result by executing the
query on all data

 FAST

 updates the content of the materialized view
using the changes since the last refresh

20

Oracle data warehousing - 39DB
MG

Creating materialized views

 REFRESH

 FORCE

 when possible, the FAST refresh is performed

 otherwise the COMPLETE refresh is
performed

 NEVER

 the content of the materialized view is not
updated using Oracle standard procedures

Oracle data warehousing - 40DB
MG

Materialized views options

 ON COMMIT

 an automatic refresh is performed when
SQL operations affect the materialized view
content

 ON DEMAND

 the refresh is performed only upon explicit
request of the user issuing the command

 DBMS_MVIEW.REFRESH

21

Oracle data warehousing - 41DB
MG

Materialized views options

 ENABLE QUERY REWRITE

 enables the DBMS to automatically use the
materialized view as a basic block (i.e., a table)
to improve other queries performance

 available only in the high-end versions of DBMS
(e.g., not available in Oracle Express)

 when unavailable, the query must be rewritten by
the user to access the materialized view

Oracle data warehousing - 42DB
MG

Creation constraints

 Depending on the DBMS and the query, you
can create a materialized view associated to
the query if some constraints are satisfied

 constraints on the aggregating attributes

 constraints on the tables and the joins

 etc.

 you must be aware of the constraint existence!

22

Oracle data warehousing - 43DB
MG

Materialized view example

 Tables

 SUPPLIERS(Cod_S, Name, SLocation)

 ITEM(Cod_I, Type, Color)

 PROJECTS(Cod_P, Name, PLocation)

 FACTS(Cod_S, Cod_I, Cod_P, Measure)

Oracle data warehousing - 44DB
MG

Materialized view example

 The materialized view query is

 SELECT Cod_S, Cod_I, SUM(Measure)

FROM Facts

GROUP BY Cod_S, Cod_I;

 Options

 Immediate data loading

 Complete refresh only upon user request

 The DBMS can use the materialized view to
optimize other queries

23

Oracle data warehousing - 45DB
MG

Materialized view example

CREATE MATERIALIZED VIEW Sup_Item_Sum

BUILD IMMEDIATE

REFRESH COMPLETE ON DEMAND

ENABLE QUERY REWRITE

AS

SELECT Cod_S, Cod_I, SUM(Measure)

FROM Facts

GROUP BY Cod_S, Cod_I;

Oracle data warehousing - 46DB
MG

Fast refresh

 Requires proper structures to log changes to
the tables involved by the materialized view
query

 MATERIALIZED VIEW LOG

 there is a log for each table of a materialized
view

 each log is associated to a single table and some
of its attributes

 it stores changes to the materialized view table

24

Oracle data warehousing - 47DB
MG

Fast refresh

 The REFRESH FAST option can be used only
if the materialized view query satisfies some
constraints

 materialized view logs for the tables and
attributes of the query must exist

 when the GROUP BY clause is used, in the
SELECT statement an aggregation function
must be specified (e.g., COUNT, SUM, …)

Oracle data warehousing - 48DB
MG

Materialized view log example

 Create a materialized view log
associated to the FACTS table, on
Cod_S, Cod_I and MEASURE attributes

 enable the options SEQUENCE and ROWID

 enable new values handling

25

Oracle data warehousing - 49DB
MG

Materialized view log example

CREATE MATERIALIZED VIEW LOG

ON Facts

WITH SEQUENCE, ROWID

(Cod_S, Cod_I, Measure)

INCLUDING NEW VALUES;

Oracle data warehousing - 50DB
MG

Example with fast refresh option

 The materialized view query is

 SELECT Cod_S, Cod_I, SUM(Measure)

FROM Facts

GROUP BY Cod_S, Cod_I;

 Options

 Immediate data loading

 Automatic fast refresh

 The DBMS can use the materialized view to
optimize other queries

26

Oracle data warehousing - 51DB
MG

Example with fast refresh option

CREATE MATERIALIZED VIEW LOG ON Facts
WITH SEQUENCE, ROWID (Cod_S, Cod_I, Measure)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW Sup_Item_Sum2
BUILD IMMEDIATE
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE
AS

SELECT Cod_S, Cod_I, SUM(Measure)
FROM Facts
GROUP BY Cod_S, Cod_I;

Oracle data warehousing - 52DB
MG

Fast refreshing materialized views

 The user or a system job can request the
materialized view update by issuing the
command

 DBMS_MVIEW.REFRESH(„view‟, {„C‟|‟F‟})

 view: name of the view to update

 „C‟: COMPLETE refresh

 „F‟: FAST refresh

27

Oracle data warehousing - 53DB
MG

 Example

 COMPLETE refresh of the materialized view
“Sup_Item_Sum”

EXECUTE DBMS_MVIEW.REFRESH(„Sup_Item_Sum‟, „C‟);

Fast refreshing materialized views

Oracle data warehousing - 54DB
MG

Changing and deleting views

 Changing

 ALTER MATERIALIZED VIEW name

options;

 Deleting

 DROP MATERIALIZED VIEW name;

28

Oracle data warehousing - 55DB
MG

Analyzing materialized views

 The command
DBMS_MVIEW.EXPLAIN_MVIEW
allows the materialized view inspection

 refresh type

 operations on which the fast refresh is enabled

 query rewrite status (enabled, allowed, disabled)

 errors

Oracle data warehousing - 56DB
MG

Execution plan

 Analyzing the execution plan of frequent
queries allows us to know whether
materialized views are used

 Query execution plans can be shown

 enabling the auto trace in
SQLPLUS> set autotrace on;

 clicking on the Explain link in the Oracle web
interface

