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Data warehousing in Oracle

Materialized views and SQL extensions
to analyze data in Oracle data warehouses

SQL extensions for data 
warehouse analysis
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Available OLAP functions

 Computation windows

 window

 Ranking functions

 rank, dense rank, ...

 Group by clause extensions

 rollup, cube, ...
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Physical aggregation example

 Example table

 SALES(City, Date, Amount)

 Analyze the amount and the average 
amount over the current and the 
previous two rows
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Physical aggregation example

SELECT Date, Amount,

AVG(Amount) OVER (

ORDER BY Date

ROWS 2 PRECEDING 

) AS MovingAverage

FROM Sales

ORDER BY Date;
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Logical aggregation example

 Example table

 SALES(City, Date, Amount)

 Select for each date the amount and the 
average amount over the current row 
and the sales of the two previous days
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Logical aggregation example

SELECT Date, Amount,

AVG(Amount) OVER (

ORDER BY Date

RANGE BETWEEN INTERVAL „2‟ 
DAY PRECEDING AND CURRENT ROW

)  AS Last3DaysAverage

FROM Sales

ORDER BY Date;
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Example tables

 Schema

 SUPPLIERS(Cod_S, Name, SLocation )

 ITEM(Cod_I, Type, Color, Weight)

 PROJECTS(Cod_P, Name, PLocation)

 FACTS(Cod_S, Cod_I, Cod_P, SoldAmount)
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Ranking example

 Select for each item the total amount sold 
and the ranking according to the total 
amount sold
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Ranking example

SELECT COD_I, SUM(SoldAmount), 

RANK() OVER (

ORDER BY SUM(SoldAmount)

)  AS SalesRank

FROM Facts

GROUP BY COD_I;
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Ranking example

COD_I SUM(SoldAmount) DenseSalesRank

I2 300 1

I5 1100 2

I4 1300 3

I6 1300 3

I1 1900 5

I3 4500 6
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Dense ranking

SELECT COD_I, SUM(SoldAmount), 

DENSE_RANK() OVER (

ORDER BY SUM(SoldAmount)

) AS DenseSalesRank

FROM Facts

GROUP BY COD_I;
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Ranking example

COD_I SUM(SoldAmount) DenseSalesRank

I2 300 1

I5 1100 2

I4 1300 3

I6 1300 3

I1 1900 4

I3 4500 5
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Double ranking

 Select for each item the code, the weight, the 
total amount sold, the ranking according to 
the weight and the ranking according to the 
total amount sold
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Double ranking

SELECT Item.COD_I, Item.Weight, 

RANK() OVER (ORDER BY Item.Weight

) AS WeightRank

RANK() OVER (ORDER BY SUM(SoldAmount)

) AS SalesRank

FROM Facts, Item

WHERE Facts.COD_I = Item.COD_I

GROUP BY Item.COD_I, Item.Weight

ORDER BY WeightRank;
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Double ranking

COD_I Weigh SUM(SoldAmount) WeightRank SalesRank

I1 12 1900 1 5

I5 12 1100 1 2

I4 14 1300 3 3

I2 17 300 4 1

I3 17 4500 4 6

I6 19 1300 6 3
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Top N ranking selection

 Select

 the top two most sold items

 their code

 their weight

 the total amount sold

 and their ranking according to the total 
amount sold
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Top N ranking selection

 Returning only the top two items can be 
performed by nesting the ranking query 
inside an outer query

 The outer query uses the nested ranking 
query as a table (after the FROM clause)

 The outer query selects the requested values 
of the rank field
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Top N ranking selection

SELECT * FROM 

(SELECT COD_I, SUM(SoldAmount), 

RANK() OVER (ORDER BY SUM(SoldAmount))

AS SalesRank

FROM Facts

GROUP BY COD_I)

WHERE SalesRank<=2;

SUPPLIERS(Cod_S, Name, SLocation )

ITEM(Cod_I, Type, Color, Weight)

PROJECTS(Cod_P, Name, PLocation)

FACTS(Cod_S, Cod_I, Cod_P, SoldAmount)
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Top N ranking selection

Temporary table created at runtime

and dropped at the end of the outer query

SELECT * FROM 

(SELECT COD_I, SUM(SoldAmount), 

RANK() OVER (ORDER BY SUM(SoldAmount))

AS SalesRank

FROM Facts

GROUP BY COD_I)

WHERE SalesRank<=2;
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ROW_NUMBER

 ROW_NUMBER

 in each partition it assigns a progressive number 
to each row

 Partition the items according to their type 
and enumerate in progressive order the data 
in each partition. In each partition the rows 
are sorted according to the weight
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ROW_NUMBER

SELECT Type, Weight, ROW_NUMBER OVER (

PARTITION BY Type

ORDER BY Weight

)  AS RowNumberWeight

FROM Item;
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ROW_NUMBER

Type Weight RowNumberWeight

Bar 12 1 Partition 1

Gear 19 1 Partition 2

Screw 12 1 Partition 3

Screw 14 2

Screw 16 3

Screw 16 4

Screw 16 5

Screw 16 6

Screw 17 7

Screw 17 8

Screw 18 9

Screw 20 10
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CUME_DIST

 CUME_DIST

 in each partition it assigns a weight between 0 
and 1 to each row according to the number of 
values which precede the value of the attribute 
employed for the sorting in the partition

 Given a partition with N rows, for each row x 
the CUME_DIST is computed as follows:

 CUME_DIST(x) = number of values, which 
precede or have the same value of the attribute 
employed for the sorting, divided by N
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CUME_DIST example

 Partition the items according to the type and sort in 
each partition according to the weight of items. 
Assign to each row the corresponding value of 
CUME_DIST
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CUME_DIST example

SELECT Type, Weight, CUME_DIST() OVER (

PARTITION BY Type

ORDER BY Weight

)  AS CumeWeight

FROM Item;
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Example CUME_DIST

Type Weight RowNumberWeight

Bar 12 1 (=1/1) Partition 1

Gear 19 1 (=1/1) Partition 2

Screw 12 0.1 (=1/10) Partition 3

Screw 14 0.2 (=2/10)

Screw 16 0.6 (=6/10)

Screw 16 0.6 (=6/10)

Screw 16 0.6 (=6/10)

Screw 16 0.6 (=6/10)

Screw 17 0.8 (=8/10)

Screw 17 0.8 (=8/10)

Screw 18 0.9 (=9/10)

Screw 20 1 (=10/10)
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NTILE

 NTILE(n)

 Allows splitting each partition in n subgroups (if it 
is possible) containing the same number of 
records. An identifier is associated to each 
subgroup.
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NTILE example

 Partition the itames according to the type and split 
each partition in 3 sub-gropus with the same 
number of data. In each partition the rows are 
ordered by the weight of items
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NTILE example

SELECT Type, Weight, NTILE(3) OVER (

PARTITION BY Type

ORDER BY Weight

)  AS Ntile3Weight

FROM ITEM;
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NTILE example

Type Weight RowNumberWeight

Bar 12 1 Partition 1

Gear 19 1 Partition 2

Screw 12 1 Partition 3

Screw 14 1 Subgroup 1

Screw 16 1

Screw 16 1

Screw 16 2

Screw 16 2 Subgroup 2

Screw 17 2

Screw 17 3

Screw 18 3 Subgroup 3

Screw 20 3

Materialized views



17

Oracle data warehousing - 33DB
MG

Materialized views

 The result is precomputed and stored on the 
disk

 They improve response times
 Aggregations and joins are precomputed

 Usually they are associated to queries with 
aggregations

 They may be used also for non aggregating 
queries

 Materialized views can be used as a table in 
any query
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Query rewriting

 The DBMS can change the execution of a 
query to optimize performance

 Materialized views can be automatically
used by the DBMS without user 
intervention

 Materialized views help answering queries very 
similar to the query which created them
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Creating materialized views 

CREATE MATERIALIZED VIEW Name

[BUILD {IMMEDIATE|DEFERRED}]

[REFRESH {COMPLETE|FAST|FORCE|NEVER} 

{ON COMMIT|ON DEMAND}]

[ENABLE QUERY REWRITE]

AS

Query
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Creating materialized views

 Name

 materialized view name

 Query

 query associated to the materialized view 
(i.e., query that creates the materialized 
view)
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Creating materialized views

 BUILD

 IMMEDIATE

 creates the materialized view and 
immediately loads the query results into the 
view

 DEFERRED

 creates the materialized view but does not
immediately load the query results into the 
view
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Creating materialized views

 REFRESH

 COMPLETE

 recomputes the query result by executing the 
query on all data

 FAST

 updates the content of the materialized view 
using the changes since the last refresh
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Creating materialized views

 REFRESH

 FORCE

 when possible, the FAST refresh is performed

 otherwise the COMPLETE refresh is 
performed

 NEVER

 the content of the materialized view is not 
updated using Oracle standard procedures
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Materialized views options

 ON COMMIT

 an automatic refresh is performed when 
SQL operations affect the materialized view 
content

 ON DEMAND

 the refresh is performed only upon explicit 
request of the user issuing the command

 DBMS_MVIEW.REFRESH
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Materialized views options

 ENABLE QUERY REWRITE

 enables the DBMS to automatically use the 
materialized view as a basic block (i.e., a table) 
to improve other queries performance

 available only in the high-end versions of DBMS 
(e.g., not available in Oracle Express)

 when unavailable, the query must be rewritten by 
the user to access the materialized view
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Creation constraints

 Depending on the DBMS and the query, you 
can create a materialized view associated to 
the query if some constraints are satisfied

 constraints on the aggregating attributes

 constraints on the tables and the joins

 etc.

 you must be aware of the constraint existence!
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Materialized view example

 Tables

 SUPPLIERS(Cod_S, Name, SLocation )

 ITEM(Cod_I, Type, Color)

 PROJECTS(Cod_P, Name, PLocation)

 FACTS(Cod_S, Cod_I, Cod_P, Measure)
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Materialized view example

 The materialized view query is

 SELECT Cod_S, Cod_I, SUM(Measure)

FROM Facts

GROUP BY Cod_S, Cod_I;

 Options

 Immediate data loading

 Complete refresh only upon user request

 The DBMS can use the materialized view to 
optimize other queries
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Materialized view example

CREATE MATERIALIZED VIEW Sup_Item_Sum

BUILD IMMEDIATE

REFRESH  COMPLETE ON DEMAND

ENABLE QUERY REWRITE

AS

SELECT Cod_S, Cod_I, SUM(Measure)

FROM Facts

GROUP BY Cod_S, Cod_I;
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Fast refresh

 Requires proper structures to log changes to 
the tables involved by the materialized view 
query

 MATERIALIZED VIEW LOG

 there is a log for each table of a materialized 
view

 each log is associated to a single table and some 
of its attributes

 it stores changes to the materialized view table
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Fast refresh

 The REFRESH FAST option can be used only 
if the materialized view query satisfies some 
constraints

 materialized view logs for the tables and 
attributes of the query must exist

 when the GROUP BY clause is used, in the 
SELECT statement an aggregation function 
must be specified (e.g., COUNT, SUM, …)
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Materialized view log example

 Create a materialized view log 
associated to the FACTS table, on 
Cod_S, Cod_I and MEASURE attributes

 enable the options SEQUENCE and ROWID

 enable new values handling
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Materialized view log example

CREATE MATERIALIZED VIEW LOG

ON Facts

WITH SEQUENCE, ROWID 

(Cod_S, Cod_I, Measure)

INCLUDING NEW VALUES;
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Example with fast refresh option

 The materialized view query is

 SELECT Cod_S, Cod_I, SUM(Measure)

FROM Facts

GROUP BY Cod_S, Cod_I;

 Options

 Immediate data loading

 Automatic fast refresh

 The DBMS can use the materialized view to 
optimize other queries
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Example with fast refresh option

CREATE MATERIALIZED VIEW LOG ON Facts
WITH SEQUENCE, ROWID (Cod_S, Cod_I, Measure)
INCLUDING NEW VALUES; 

CREATE MATERIALIZED VIEW Sup_Item_Sum2
BUILD IMMEDIATE
REFRESH  FAST ON COMMIT
ENABLE QUERY REWRITE
AS

SELECT Cod_S, Cod_I, SUM(Measure)
FROM Facts
GROUP BY Cod_S, Cod_I;
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Fast refreshing materialized views

 The user or a system job can request the 
materialized view update by issuing the 
command

 DBMS_MVIEW.REFRESH(„view‟, {„C‟|‟F‟})

 view: name of the view to update

 „C‟: COMPLETE refresh

 „F‟: FAST refresh
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 Example

 COMPLETE refresh of the materialized view 
“Sup_Item_Sum”

EXECUTE DBMS_MVIEW.REFRESH(„Sup_Item_Sum‟, „C‟);

Fast refreshing materialized views
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Changing and deleting views

 Changing

 ALTER MATERIALIZED VIEW name

options;

 Deleting

 DROP MATERIALIZED VIEW name;
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Analyzing materialized views

 The command
DBMS_MVIEW.EXPLAIN_MVIEW
allows the materialized view inspection

 refresh type

 operations on which the fast refresh is enabled

 query rewrite status (enabled, allowed, disabled)

 errors
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Execution plan

 Analyzing the execution plan of frequent 
queries allows us to know whether 
materialized views are used

 Query execution plans can be shown

 enabling the auto trace in
SQLPLUS> set autotrace on;

 clicking on the Explain link in the Oracle web 
interface


