Data warehousing in Oracle

Materialized views and SQL extensions
to analyze data in Oracle data warehouses

B

Data Bese and Data Mining Group of Folite anico di Tario

SQL extensions for data
warehouse analysis

Data Base and Dt Miring Group of Polite anico di Terizo

(¢ Available OLAP functions
= Computation windows
= window
= Ranking functions
= rank, dense rank, ...

= Group by clause extensions
= rollup, cube, ...

D\%\G Oracle data warehousing - 3

RE5% - -
;; Physical aggregation example

= Example table
= SALES(City, Date, Amount)

= Analyze the amount and the average
amount over the current and the
previous two rows

DN\G Oracle data warehousing - 4

‘;fi Physical aggregation example
SELECT Date, Amount,
AVG(Amount) OVER (
ORDER BY Date
ROWS 2 PRECEDING
) AS MovingAverage
FROM Sales

ORDER BY Date;

D‘%\G Oracle data warehousing - 5

‘f;f:. Logical aggregation example
= Example table

= SALES(City, Date, Amount)

= Select for each date the amount and the
average amount over the current row
and the sales of the two previous days

D“B/\G Oracle data warehousing - 6

;*‘"“}‘iéu""f:g - -
;Q Logical aggregation example
SELECT Date, Amount,
AVG(Amount) OVER (
ORDER BY Date

RANGE BETWEEN INTERVAL ‘2’
DAY PRECEDING AND CURRENT ROW

) AS Last3DaysAverage
FROM Sales
ORDER BY Date;

D‘%\G Oracle data warehousing - 7

SBR,
;Z_ Example tables

= Schema
= SUPPLIERS(Cod_S, Name, SLocation)
« ITEM(Cod_1I, Type, Color, Weight)
= PROJECTS(Cod_P, Name, PLocation)
= FACTS(Cod_S, Cod 1, Cod_ P, SoldAmount)

DN\G Oracle data warehousing - 8

f Ranking example

= Select for each item the total amount sold
and the ranking according to the total
amount sold

D\\/\G Oracle data warehousing - 9

; Ranking example

SELECT COD_I, SUM(SoldAmount),
RANK() OVER (
ORDER BY SUM(SoldAmount)
) AS SalesRank
FROM Facts
GROUP BY COD_I;

D“B/\G Oracle data warehousing - 10

i Ranking example
2 300 1
I 1100 2
14 1300 3
16 1300 3
1 1900 5
13 4500 6
D‘%\G Oracle data warehousing - 11
Lo A

i Dense ranking

SELECT COD_I, SUM(SoldAmount),
DENSE_RANK() OVER (
ORDER BY SUM(SoldAmount)
) AS DenseSalesRank
FROM Facts
GROUP BY COD_I;

D\%\G Oracle data warehousing - 12

a“‘é’ Ranking example

fJ

I e
1 300 1
I5 1100 2
14 1300 3
16 1300 3
ol 1900 4
13 4500 5
D‘%\G Oracle data warehousing - 13

”E’ Double ranking
= Select for each item the code, the weight, the
total amount sold, the ranking according to
the weight and the ranking according to the

total amount sold

D\\/\G Oracle data warehousing - 14

*~2% Double ranking

SELECT Item.COD_I, Item.Weight,

RANK() OVER (ORDER BY Item.Weight

) AS WeightRank
RANK() OVER (ORDER BY SUM(SoldAmount)
) AS SalesRank

FROM Facts, Item

WHERE Facts.COD_I = Item.COD_I
GROUP BY Item.COD_I, Item.Weight

ORDER BY WeightRank;

DG

Oracle data warehousing - 15

2% Double ranking

Il 12
15 12
14 14
12 17
I3 17
16 19

1900
1100
1300
300
4500

1300

1 5
1 2
3 3
4 1
4 6
6 3

Oracle data warehousing - 16

;5_;&‘#!:.-,,{% . .
;; Top N ranking selection

= Select
= the top two most sold items
= their code
= their weight
= the total amount sold

= and their ranking according to the total
amount sold

D‘%\G Oracle data warehousing - 17

SR . -
‘;i Top N ranking selection

= Returning only the top two items can be
performed by nesting the ranking query
inside an outer query

= The outer query uses the nested ranking
query as a table (after the FROM clause)

= The outer query selects the requested values
of the rank field

DN\G Oracle data warehousing - 18

{501 Top N ranking selection

SELECT * FROM
(SELECT COD_I, SUM(SoldAmount),
RANK() OVER (ORDER BY SUM(SoldAmount))
AS SalesRank
FROM Facts
GROUP BY COD_I)
WHERE SalesRank<=2;

SUPPLIERS(Cod_S, Name, SLocation)
ITEM(Cod 1, Type, Color, Weight)
PROJECTS(Cod P, Name, PLocation)
FACTS(Cod S, Cod I, Cod P, SoldAmount)

D\%\G Oracle data warehousing - 19

Top N ranking selection

SELECT * FROM
(SELECT COD_I, SUM(SoldAmount),
RANK() OVER (ORDER BY SUM(SoldAmount))
AS SalesRank

FROM Facts
GROUP BY COD_I)
WHERE SalesRank<=2; I

Temporary table created at runtime
and dropped at the end of the outer query

D“B/\G Oracle data warehousing - 20

10

&) ROW_NUMBER

= ROW_NUMBER

= in each partition it assigns a progressive number
to each row

= Partition the items according to their type
and enumerate in progressive order the data
in each partition. In each partition the rows
are sorted according to the weight

D‘%\G Oracle data warehousing - 21

*i:_ ROW_NUMBER

SELECT Type, Weight, ROW_NUMBER OVER (
PARTITION BY Type
ORDER BY Weight
) AS RowNumberWeight

FROM Item;

DN\G Oracle data warehousing - 22

11

&) ROW_NUMBER

Bar 12 1 Partition 1
Gear 19 1 Partition 2
Screw 12 1 Partition 3
Screw 14 2
Screw 16 3
Screw 16 4
Screw 16 5
Screw 16 6
Screw 17 7
Screw 17 8
Screw 18 9
Screw 20 10

D‘%\G Oracle data warehousing - 23

{44} CUME_DIST

= CUME_DIST

= in each partition it assigns a weight between 0
and 1 to each row according to the number of
values which precede the value of the attribute
employed for the sorting in the partition

= Given a partition with N rows, for each row x
the CUME_DIST is computed as follows:

=« CUME_DIST(x) = number of values, which
precede or have the same value of the attribute
employed for the sorting, divided by N

D“B/\G Oracle data warehousing - 24

12

(&) CUME_DIST example

= Partition the items according to the type and sort in
each partition according to the weight of items.
Assign to each row the corresponding value of
CUME_DIST

D\%\G Oracle data warehousing - 25

{44} CUME_DIST example

SELECT Type, Weight, CUME_DIST() OVER (
PARTITION BY Type
ORDER BY Weight
) AS CumeWeight

FROM Item;

D“B/\G Oracle data warehousing - 26

(¢! Example CUME_DIST

Bar 12 1 (=1/1) Partition 1
Gear 19 1 (=1/1) Partition 2
Screw 12 0.1 (=1/10) Partition 3
Screw 14 0.2 (=2/10)

Screw 16 0.6 (=6/10)
Screw 16 0.6 (=6/10)
Screw 16 0.6 (=6/10)
Screw 16 0.6 (=6/10)
Screw 17 0.8 (=8/10)
Screw 17 0.8 (=8/10)
Screw 18 0.9 (=9/10)
Screw 20 1 (=10/10)
D\%\G Oracle data warehousing - 27

{4 NTILE

= NTILE(n)
= Allows splitting each partition in n subgroups (if it
is possible) containing the same number of

records. An identifier is associated to each
subgroup.

D“B/\G Oracle data warehousing - 28

14

;; NTILE example

= Partition the itames according to the type and split
each partition in 3 sub-gropus with the same
number of data. In each partition the rows are
ordered by the weight of items

D‘%\G Oracle data warehousing - 29

*f;; NTILE example
SELECT Type, Weight, NTILE(3) OVER (
PARTITION BY Type
ORDER BY Weight

) AS Ntile3Weight
FROM ITEM;

D“B/\G Oracle data warehousing - 30

15

4

! NTILE example

m RowNumberWeight
Bar 12 1

Partition 1
Gear 19 1 Partition 2
Screw 12 1 Partition 3
Screw 14 1 Subgroup 1
Screw 16 1
Screw 16 1
Screw 16 2
Screw 16 2 Subgroup 2
Screw 17 2
Screw 17 3
Screw 18 3 Subgroup 3
Screw 20 3
D‘%\G Oracle data warehousing - 31

Materialized views

Data Base and Dita Mining Group of Polite anico di Tariro

16

;i Materialized views

= The result is precomputed and stored on the
disk

= They improve response times
= Aggregations and joins are precomputed

= Usually they are associated to queries with
aggregations

= They may be used also for non aggregating
queries

= Materialized views can be used as a table in
any query

D\%\G Oracle data warehousing - 33

\\\\\\

= The DBMS can change the execution of a
query to optimize performance
= Materialized views can be automatically

used by the DBMS without user
intervention

= Materialized views help answering queries very
similar to the query which created them

D“B/\G Oracle data warehousing - 34

17

L

(o

CREATE MATERIALIZED VIEW Name

[BUILD {IMMEDIATE|DEFERRED}]

[REFRESH {COMPLETE|FAST|FORCE|NEVER}
{ON COMMIT|ON DEMAND}]

[ENABLE QUERY REWRITE]

AS

uer

=4} Creating materialized views

D\%\G Oracle data warehousing - 35

=0} Creating materialized views

s Name
= materialized view name

n QU@/’ %

= query associated to the materialized view

(i.e., query that creates the materialized
view)

D“B/\G Oracle data warehousing - 36

18

;5_;&‘#!:.-,,{%
;i Creating materialized views

= BUILD

=« IMMEDIATE

= creates the materialized view and
immediately loads the query results into the
view
= DEFERRED

= creates the materialized view but does not
immediately load the query results into the
view

D‘%\G Oracle data warehousing - 37

SER] - .
;:. Creating materialized views

= REFRESH

=« COMPLETE

= recomputes the query result by executing the
query on all data

= FAST

= updates the content of the materialized view
using the changes since the last refresh

D“B/\G Oracle data warehousing - 38

19

;*‘"“}‘iéu""f:g g . e .
;Q Creating materialized views

= REFRESH

= FORCE
= when possible, the FAST refresh is performed

» otherwise the COMPLETE refresh is
performed

= NEVER

= the content of the materialized view is not
updated using Oracle standard procedures

D\\/\G Oracle data warehousing - 39

SER E—— . .
‘g Materialized views options

= ON COMMIT

= an automatic refresh is performed when
SQL operations affect the materialized view
content

= ON DEMAND

= the refresh is performed only upon explicit
request of the user issuing the command
« DBMS_MVIEW.REFRESH

D“B/\G Oracle data warehousing - 40

20

;Q Materialized views options
= ENABLE QUERY REWRITE

= enables the DBMS to automatically use the
materialized view as a basic block (i.e., a table)
to improve other queries performance

= available only in the high-end versions of DBMS
(e.g., not available in Oracle Express)

= when unavailable, the query must be rewritten by
the user to access the materialized view

D‘%\G Oracle data warehousing - 41

: Creation constraints

= Depending on the DBMS and the query, you
can create a materialized view associated to
the query if some constraints are satisfied
= constraints on the aggregating attributes
= constraints on the tables and the joins
= etc.
= you must be aware of the constraint existence!

D“B/\G Oracle data warehousing - 42

21

;:L Materialized view example

= Tables
= SUPPLIERS(Cod S, Name, SLocation)
« ITEM(Cod I, Type, Color)
= PROJECTS(Cod P, Name, PLocation)
=« FACTS(Cod S, Cod I, Cod P, Measure)

D‘%\G Oracle data warehousing - 43

: Materialized view example

= The materialized view query is
=« SELECT Cod_S, Cod_I, SUM(Measure)
FROM Facts
GROUP BY Cod_S, Cod_I;
= Options
« Immediate data loading
= Complete refresh only upon user request

= The DBMS can use the materialized view to
optimize other queries

D“B/\G Oracle data warehousing - 44

22

;il Materialized view example

CREATE MATERIALIZED VIEW Sup_Item_Sum
BUILD IMMEDIATE
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE
AS
SELECT Cod_S, Cod_I, SUM(Measure)
FROM Facts
GROUP BY Cod_S, Cod_I;

D‘%\G Oracle data warehousing - 45

= Requires proper structures to log changes to
the tables involved by the materialized view
query
= MATERIALIZED VIEW LOG
= there is a log for each table of a materialized
view
= each log is associated to a single table and some
of its attributes

= it stores changes to the materialized view table

D“B/\G Oracle data warehousing - 46

23

t“?g

;? Fast refresh

= The REFRESH FAST option can be used only
if the materialized view query satisfies some
constraints

= materialized view logs for the tables and
attributes of the query must exist

= when the GROUP BY clause is used, in the
SELECT statement an aggregation function
must be specified (e.g., COUNT, SUM, ...)

D\\/\G Oracle data warehousing - 47

,;_%v""‘}';‘?u""ti - - 5
‘;.i Materialized view log example

= Create a materialized view log
associated to the FACTS table, on
Cod_S, Cod_I and MEASURE attributes

= enable the options SEQUENCE and ROWID
= enable new values handling

DN\G Oracle data warehousing - 48

24

f Materialized view log example

CREATE MATERIALIZED VIEW LOG
ON Facts
WITH SEQUENCE, ROWID
(Cod_S, Cod_I, Measure)
INCLUDING NEW VALUES;

D\%\G Oracle data warehousing - 49

‘if; Example with fast refresh option

= The materialized view query is
=« SELECT Cod_S, Cod_I, SUM(Measure)
FROM Facts
GROUP BY Cod_S, Cod_I;
= Options
« Immediate data loading
= Automatic fast refresh

= The DBMS can use the materialized view to
optimize other queries

D“B/\G Oracle data warehousing - 50

25

%% Example with fast refresh option

72

CREATE MATERIALIZED VIEW LOG ON Facts
WITH SEQUENCE, ROWID (Cod_S, Cod_I, Measure)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW Sup_Item_Sum2
BUILD IMMEDIATE
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE
AS
SELECT Cod_S, Cod_I, SUM(Measure)
FROM Facts
GROUP BY Cod_S, Cod_I;

D\%\G Oracle data warehousing - 51

{44! Fast refreshing materialized views

= The user or a system job can request the
materialized view update by issuing the
command
=« DBMS_MVIEW.REFRESH('view’, {'C7F?%})
= view:. name of the view to update

« 'C* COMPLETE refresh
« F* FAST refresh

D“B/\G Oracle data warehousing - 52

26

i’“ Fast refreshing materialized views

= Example

= COMPLETE refresh of the materialized view
“Sup_Item_Sum”

EXECUTE DBMS_MVIEW.REFRESH('Sup_Item_Sum’, ‘C");

D\%\G Oracle data warehousing - 53

A Changing and deleting views

= Changing
= ALTER MATERIALIZED VIEW name
options,
= Deleting
= DROP MATERIALIZED VIEW name;

D“B/\G Oracle data warehousing - 54

27

;*‘"“}‘iéu""f:g o . e .
;.1 Analyzing materialized views

= The command
DBMS_MVIEW.EXPLAIN_MVIEW
allows the materialized view inspection
= refresh type
= operations on which the fast refresh is enabled
= query rewrite status (enabled, allowed, disabled)
= Errors

D‘%\G Oracle data warehousing - 55

SER .
‘4> Execution plan

-'Analyzing the execution plan of frequent
queries allows us to know whether
materialized views are used

= Query execution plans can be shown

= enabling the auto trace in
SQLPLUS> set autotrace on;

= clicking on the Explain link in the Oracle web
interface Results Explain Describe Saved SQL History

Query Plan

nnnnnnnnn
CT STATEMENT 5 1 14 65
HRSH GROUF BY 5 1 14 (-]

D“B/\G Oracle data warehousing - 56

28

