Practice #2 solution

The aim of the practice is to design of some triggers which allow to maintain the consistency
between tables of different databases after the update of them.

Exercise #1
The following relations are given:

IMP (EMPNO, DEPTNO, ENAME, JOB, SAL)
DIP (DEPTNO, DNAME, LOC, MINSAL, MAXSAL)

Database before the execution of the trigger

IMP table
EMPHO DEPTHO EHNAME JOB SAL
Foao 10 SMITH CLERK 250
010 10 SCOTT AMALYST 1600
FO20 10 BLAKE SALESMAN 1400
7030 10 SMITH MAMAGER 2500
7040 20 SMITH CLERK aon
Tos0 20 SCOTT ARALYET 1600
FOs0 30 ADAME CLERK a0a
Toro 30 JAMES CLERK 1000
Fos0 40 ALLEN CLERK &al

DIP table

DEPTHO DNAME LOC MINSAL MAXSAL
10 ACCOUNTING NEW YORK 100 2500
20 RESEARCH DALLAS 150 3000
30 SALES CHICAGO 120 2500

40 OPERATIONS BOSTON 200 2100

Trigger

CREATE OR REPLACE TRIGGER UP SAL

AFTER UPDATE OF DNAME ON DIP

FOR EACH ROW

WHEN (OLD.DNAME="'ACCOUNTING' AND NEW.DNAME='SALES')

BEGIN

-—-- update the salary of the employees of that department
UPDATE IMP

SET SAL=SAL+100

WHERE DEPTNO=:0LD.DEPTNO;

END;

Update statement
UPDATE DIP SET DNAME = 'SALES' WHERE DNAME='ACCOUNTING';

Database after the execution of the trigger

IMP table

EMPHO DEPTHO ENAME JOB SAL

7000 10 SMTH ~ CLERK 550

7010 10 SCOTT AMaLYsST {1700

7020 10 BLAKE SALESMAMN

7030 10 SMITH MANAGER

7040 20 SMTH ~ CLERK 800 |

7050 20 SCOTT AMALYST 1600

7060 30 ADMME CLERK 500

7070 a0 JAMES CLERK 1000

7080 40 ALLEM CLERK as0 |
DIP table

DEPTHO DNAME LocC MINSAL MAXSAL
10 NEW YORK 100 2500

20 RESEARCH DALLAS 150 3000

30 SALES CHICAGO 120 2500
40 OPERATIONS ~ BOSTON 200 2100
Comments

The trigger fires after an update of the DNAME attribute of the DIP table (mode after). The
execution granularity is row level because it must access the old and the new value of DNAME to
check if the update is the one requested (ACCOUNTING'->'SALES).

Exercise #2

The following relations are given:

CARDS (CARDNO, NAME, STATUS)
FLIGHTS (FLIGHTID, DEPARTURETIME, DEPARTURECITY, ARRIVALCITY, MILES)
TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)

CREDITS (TICKETID, CARDNO, MILES)
NOTIFY (CARDNO, NOTIFYNO, NOTIFYDATE, OLDSTATUS, NEWSTATUS, TOTALMILES)

We must design a trigger which manages the database integrity after a new ticket issue (insert of a record in
the TICKETS table), updating concordantly the tables CREDITS, CARDS (if the issue implies a status
change) and NOTIFY (to notify the status change).

Database before the execution of the trigger

CARDS table
CARDHO HNAME STATUS
10 JOHM SILVER
20 KEN OLD
30 LUCY PREMILIM
40 BRUCE SILVER
50 BILL SILYER

FLIGHTS table

FLIGHTID
RN 2K
BT15K
PS22H
LTOZH
TS0k

DEPARTURETIME

TICKETS table

TICKETID
T

DEPARTURECITY

0o:45 RORE

12354 BERLIM

2354 PARIS

2354 LOMDOM

11:00 TURIM
FLIGHTID FLIGHTDATE HAME
LTOEk, M-APR-0F JOHR

CREDITS table

TICKETID
T

Table NOTIFY is initially empty

CARDHO
10

MILES
So00

ARRIVALCITY
MEW™ ¥ ORHK
TORND
SIDMEY
TOROMTO
S MARLA DI LELIC A,

CARDHO
10

MILES
12000
13000
22000
g0an
1000

Trigger

CREATE OR REPLACE TRIGGER NEW TICKET
AFTER INSERT ON TICKETS

FOR EACH ROW

WHEN (NEW.CARDNO IS NOT NULL)
DECLARE

DISTANZA NUMBER;

DISTTOTALE NUMBER;

VECCHIOSTATO CHAR(10);

NUOVOSTATO CHAR(10) ;

IDNOTIFY NUMBER;

BEGIN

-—-—- STEP 1

-—-— find the miles of the flight of the ticket
SELECT MILES INTO DISTANZA

FROM FLIGHTS

WHERE FLIGHTID=:NEW.FLIGHTID;

-—-— update the total miles
INSERT INTO CREDITS (TICKETID, CARDNO, MILES)
VALUES (:NEW.TICKETID, :NEW.CARDNO, DISTANZA);

--— STEP 2

SELECT SUM(MILES) INTO DISTTOTALE
FROM CREDITS

WHERE CARDNO=:NEW.CARDNO;

-—— take the status of the customer to check if it
--—- is changed => see STEP 3

SELECT STATUS INTO VECCHIOSTATO

FROM CARDS

WHERE CARDNO=:NEW.CARDNO;

IF (DISTTOTALE>30000 AND DISTTOTALE<50000 AND VECCHIOSTATO<>'GOLD') THEN
---change status from SILVER to GOLD

UPDATE CARDS

SET STATUS='GOLD'

WHERE CARDNO=:NEW.CARDNO;

ELSE

IF (DISTTOTALE>50000 AND VECCHIOSTATO<>'PREMIUM') THEN
—-—--change status from GOLD to PREMIUM

UPDATE CARDS

SET STATUS='PREMIUM'

WHERE CARDNO=:NEW.CARDNO;

END TIF;

END TIF;

-—-—-STEP 3

-—-- take the status of the customer to check if
--—- it is changed

SELECT STATUS INTO NUOVOSTATO

FROM CARDS

WHERE CARDNO=:NEW.CARDNO;

IF (VECCHIOSTATO<>NUOVOSTATO) THEN
--- status is changed => insert in NOTIFY

-—-- read last NOTIFYNO of the CARDNO of the customer
-—-— to insert a new NOTIFYNO for the notification
SELECT MAX (NOTIFYNO) INTO IDNOTIFY

FROM NOTIFY

WHERE CARDNO=:NEW.CARDNO;

IF(IDNOTIFY IS NOT NULL) THEN

-—— there is at least another notification for the customer

INSERT INTO NOTIFY (CARDNO, NOTIFYNO, NOTIFYDATE, OLDSTATUS, NEWSTATUS,
TOTALMILES)

VALUES (:NEW.CARDNO, IDNOTIFY+1, :NEW.FLIGHTDATE, VECCHIOSTATO,
NUOVOSTATO, DISTTOTALE) ;

ELSE

—-—— first notification for the customer

INSERT INTO NOTIFY (CARDNO, NOTIFYNO, NOTIFYDATE, OLDSTATUS, NEWSTATUS,
TOTALMILES)

VALUES (:NEW.CARDNO, 1, :NEW.FLIGHTDATE, VECCHIOSTATO, NUOVOSTATO,
DISTTOTALE) ;

END TIF;

END TIF;

END;

Verify the results achieved

STEP 1

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)
VALUES ('T0O2', 'RN12K', '01-MAR-07', 'PIPPO', NULL);

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)
VALUES ('T03', 'RN12K', '02-APR-07', 'BILL', 50);

TICKETS table
TICKETID FLIGHTID FLIGHTDATE HAME CARDHO

T LTO8K 01-&PR-07 JOHM 10
| Toz R 2K, 01-MAR-O7 PIFPC - |
o3 RINT 21, 02-APR-07 BILL =0]

CREDITS table

TICKETID CARDNO MILES
o 10 5000

| 703 50 12000 |

STEP 2

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)
VALUES ('T04', 'RN12K', '03-MAG-07', 'BILL', 50);

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)
VALUES ('TO5', 'RN12K', '03-MAG-07', 'BILL', 50);

TICKETS table
| TICKETID FLIGHTID FLIGHTDATE NAME CARDHO |

-|TIII4 R 2H, 03-MAZ-07 BILL so |

101 LToaEk, 01-£PR-07 JOHR 10
T0Z RRI1 2k, 01 -MAR-07 PPPD -

| 103 Rk 2K, 02-&PR-07 BILL 50
|05 RR1 2H 03-MAG-07 BILL s0 |

CREDITS table
| TICKETID CARDNO MILES |

[Fos 50 2000 | |
| 101 10 5000

T03 50 12000
i 50 72000 |
CARDS table
| CARDNO NAME STATUS
10 JOHN SILVER
|20 KEN GOLD

30 LUCY PREMILM
|40 BRUCE SILVER

50 BILL
STEP 3

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)
VALUES ('TO6', 'RN12K', '03-MAG-07', 'BILL', 50);

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)
VALUES ('TO7', 'RN12K', '03-MAG-07', 'BILL', 50);

TICKETS table
TICKETID FLIGHTID FLIGHTDATE HNAME CARDNO

02 RI1 2K 01 -MAR-07 PIPPO -
T04 R 2K 03-MAG-07 BILL 50

| To5 R 2K 03-MAG-07 BILL Tl |
04 LTO8K 01 -APR-07 JOHM 10
03 R 2K 02-APR-07 BILL 50
T0S RRH 2k 03-MAG-07 BILL 50

[To7 R 2K, 03-MaG-07 BILL s0 |

CREDITS table
TICKETID CARDHNO MILES

T04 50) 12000
| 105 50 12000 |
TN 10 8000
03 50 12000
T05 50) 12000
| To7 50 12000 |

CARDS table
CARDNO MNAME STATUS
10 JOHM SILVER
20 KEM GOLD
30 LUCY PREMIUM
40 BRUCE SILVER
50 BILL

NOTIFY table

CARDNO NOTIFYNO NOTIFYDATE OLDSTATUS NEWSTATUS TOTALMILES
| 50 1 03-MAG-07 GOLD PREMIUM £0000 |
Comments

The trigger fires after the issue of a new ticket (insert in TICKETS table). As the previous one, the
execution granularity is row level because we need to know if the issued ticket is associated with a
card number (CARDNO IS NOT NULL), condition which fires the trigger (WHEN clause),
because in the other case we don't need the trigger to fire. Trigger is written in 3 different steps so
we can verify step by step the correctness. In particular at step 2 (update of STATUS in CARDS)
we check the updates even if the old status (stored in the variable VECCHIOSTATO) because in
some cases the update of that attribute on each execution of the trigger could be inefficient in term
of execution cost (in the case the flight make the change of the total count of miles but not implies
the exceed of the threshold to change STATUS).

Exercise #3
The following relations are given:

IMP (EMPNO, ENAME, JOB, SAL)
SUMMARY (JOB, NUM)

Database before the execution of the trigger

IMP table
EMPHO EHAME JOB SAL
1 WERDI SEGRETARIE 800
2 RO=E] BARNCHIERE Qa0
3 BIANMCHI BARCHIERE 1100

SUMMARY table

JOB HUM
SEGRETARIA 1
BAMCHIERE 2

Trigger to manage the insert in IMP

CREATE OR REPLACE TRIGGER INS IMP
AFTER INSERT ON IMP

FOR EACH ROW

DECLARE

N NUMBER;

M NUMBER;

BEGIN

——— check if there are employees that
-—-- do the same job

SELECT COUNT (*) INTO N

FROM SUMMARY

WHERE JOB=:NEW.JOB;

IF(N=0) THEN

-—— it's the first employee that
--- do that job

INSERT INTO SUMMARY (JOB, NUM)
VALUES (:NEW.JOB, 1);

ELSE

—-—— there is at least one employee
-—-- that already does that job

SELECT NUM INTO M
FROM SUMMARY
WHERE JOB=:NEW.JOB;

UPDATE SUMMARY

SET NUM=M+1

WHERE JOB=:NEW.JOB;
END TF;

END;

Update statement:

INSERT INTO IMP(EMPNO, ENAME,
"CORRIERE', 750);

Database after the execution of the trigger

IMP table
EMPHO EHAME JOB SAL
1 WERDI SEGRETARIA Bo0

2 ROSSI BANCHERE 900
3 BIAMCH BANCHERE 1100
| 4 MER CORRIERE 750 |

SUMMARY table

JOB HUM

| SEGRETARIS 1
BAMCHERE 2

[CORRIERE 1|

Trigger to manage the update of JOB in IMP

CREATE OR REPLACE TRIGGER UPD_ IMP
AFTER UPDATE OF JOB ON IMP

FOR EACH ROW

DECLARE

N NUMBER;

M NUMBER;

X NUMBER;

BEGIN

JOB, SAL)

—-—— check if there are employees that

-—-- do the same job
SELECT COUNT (*) INTO N

VALUES (4,

'"NERI',

FROM SUMMARY
WHERE JOB=:NEW.JOB;

-—— increment the new JOB

IF (N=0) THEN

-—— it's the first employee that
--- do that job

INSERT INTO SUMMARY (JOB, NUM)
VALUES (:NEW.JOB, 1);

ELSE

—-—— there is at least one employee
-—-- that already does that job
SELECT NUM INTO M

FROM SUMMARY

WHERE JOB=:NEW.JOB;

UPDATE SUMMARY

SET NUM=M+1

WHERE JOB=:NEW.JOB;
END TF;

—-—— decrement the old JOB
SELECT NUM INTO X

FROM SUMMARY

WHERE JOB=:0LD.JOB;

IF(X=1) THEN

-—-— there was only one person that did that
record from SUMMARY

DELETE FROM SUMMARY

WHERE JOB=:0LD.JOB;

ELSE

-—-—- there was other people that did that job
the record in SUMMARY

UPDATE SUMMARY

SET NUM=X-1

WHERE JOB=:0LD.JOB;

END IF;

END;

Update statement

UPDATE IMP SET JOB='CORRIERE' WHERE EMPNO=2;

Database after the execution of the trigger

job

=> delete the

=> decrement NUM of

IMP table

EMPHO ENAME 10B SAL
E VERDI SEGRETARIA 800

2 ROSSI 900

3 BISMCHI BAMCHERE 1100

SUMMARY table
JOB HUM

| CORRIERE 1|
SEGRETARIA 1

BANCHERE @

Comments

Both triggers are row level because we need to access the JOB field of the inserted or updated tuple
of the table IMP; for this reason we check if after the modification of IMP it exists a tuple (and if so
how many of them) with the same JOB value using the SUMMARY table despite the fact that the
check would be easier by counting the tuples in IMP; however row level triggers cannot access the
mutating table.

