
Practice #2 solution

The aim of the practice is to design of some triggers which allow to maintain the consistency

between tables of different databases after the update of them.

Exercise #1

The following relations are given:

IMP (EMPNO, DEPTNO, ENAME, JOB, SAL)

DIP (DEPTNO, DNAME, LOC, MINSAL, MAXSAL)

Database before the execution of the trigger

IMP table

 DIP table

Trigger

CREATE OR REPLACE TRIGGER UP_SAL

AFTER UPDATE OF DNAME ON DIP

FOR EACH ROW

WHEN(OLD.DNAME='ACCOUNTING' AND NEW.DNAME='SALES')

BEGIN

--- update the salary of the employees of that department

UPDATE IMP

SET SAL=SAL+100

WHERE DEPTNO=:OLD.DEPTNO;

END;

Update statement

UPDATE DIP SET DNAME = 'SALES' WHERE DNAME='ACCOUNTING';

Database after the execution of the trigger

IMP table

DIP table

Comments

The trigger fires after an update of the DNAME attribute of the DIP table (mode after). The

execution granularity is row level because it must access the old and the new value of DNAME to

check if the update is the one requested ('ACCOUNTING'->'SALES').

Exercise #2

The following relations are given:

CARDS (CARDNO, NAME, STATUS)

FLIGHTS (FLIGHTID, DEPARTURETIME, DEPARTURECITY, ARRIVALCITY, MILES)

TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)

CREDITS (TICKETID, CARDNO, MILES)

NOTIFY (CARDNO, NOTIFYNO, NOTIFYDATE, OLDSTATUS, NEWSTATUS, TOTALMILES)

We must design a trigger which manages the database integrity after a new ticket issue (insert of a record in

the TICKETS table), updating concordantly the tables CREDITS, CARDS (if the issue implies a status

change) and NOTIFY (to notify the status change).

Database before the execution of the trigger

CARDS table

FLIGHTS table

TICKETS table

CREDITS table

Table NOTIFY is initially empty

Trigger

CREATE OR REPLACE TRIGGER NEW_TICKET

AFTER INSERT ON TICKETS

FOR EACH ROW

WHEN (NEW.CARDNO IS NOT NULL)

DECLARE

DISTANZA NUMBER;

DISTTOTALE NUMBER;

VECCHIOSTATO CHAR(10);

NUOVOSTATO CHAR(10);

IDNOTIFY NUMBER;

BEGIN

--- STEP 1

--- find the miles of the flight of the ticket

SELECT MILES INTO DISTANZA

FROM FLIGHTS

WHERE FLIGHTID=:NEW.FLIGHTID;

--- update the total miles

INSERT INTO CREDITS(TICKETID, CARDNO, MILES)

VALUES(:NEW.TICKETID, :NEW.CARDNO, DISTANZA);

--- STEP 2

SELECT SUM(MILES) INTO DISTTOTALE

FROM CREDITS

WHERE CARDNO=:NEW.CARDNO;

--- take the status of the customer to check if it

--- is changed => see STEP 3

SELECT STATUS INTO VECCHIOSTATO

FROM CARDS

WHERE CARDNO=:NEW.CARDNO;

IF (DISTTOTALE>30000 AND DISTTOTALE<50000 AND VECCHIOSTATO<>'GOLD') THEN

---change status from SILVER to GOLD

UPDATE CARDS

SET STATUS='GOLD'

WHERE CARDNO=:NEW.CARDNO;

ELSE

IF (DISTTOTALE>50000 AND VECCHIOSTATO<>'PREMIUM') THEN

---change status from GOLD to PREMIUM

UPDATE CARDS

SET STATUS='PREMIUM'

WHERE CARDNO=:NEW.CARDNO;

END IF;

END IF;

---STEP 3

--- take the status of the customer to check if

--- it is changed

SELECT STATUS INTO NUOVOSTATO

FROM CARDS

WHERE CARDNO=:NEW.CARDNO;

IF(VECCHIOSTATO<>NUOVOSTATO) THEN

--- status is changed => insert in NOTIFY

--- read last NOTIFYNO of the CARDNO of the customer

--- to insert a new NOTIFYNO for the notification

SELECT MAX(NOTIFYNO) INTO IDNOTIFY

FROM NOTIFY

WHERE CARDNO=:NEW.CARDNO;

IF(IDNOTIFY IS NOT NULL) THEN

--- there is at least another notification for the customer

INSERT INTO NOTIFY(CARDNO, NOTIFYNO, NOTIFYDATE, OLDSTATUS, NEWSTATUS,

TOTALMILES)

VALUES(:NEW.CARDNO, IDNOTIFY+1, :NEW.FLIGHTDATE, VECCHIOSTATO,

NUOVOSTATO, DISTTOTALE);

ELSE

--- first notification for the customer

INSERT INTO NOTIFY(CARDNO, NOTIFYNO, NOTIFYDATE, OLDSTATUS, NEWSTATUS,

TOTALMILES)

VALUES(:NEW.CARDNO, 1, :NEW.FLIGHTDATE, VECCHIOSTATO, NUOVOSTATO,

DISTTOTALE);

END IF;

END IF;

END;

Verify the results achieved

STEP 1

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)

VALUES ('T02', 'RN12K', '01-MAR-07', 'PIPPO', NULL);

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)

VALUES ('T03', 'RN12K', '02-APR-07', 'BILL', 50);

TICKETS table

CREDITS table

STEP 2

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)

VALUES ('T04', 'RN12K', '03-MAG-07', 'BILL', 50);

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)

VALUES ('T05', 'RN12K', '03-MAG-07', 'BILL', 50);

TICKETS table

CREDITS table

CARDS table

STEP 3

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)

VALUES ('T06', 'RN12K', '03-MAG-07', 'BILL', 50);

INSERT INTO TICKETS (TICKETID, FLIGHTID, FLIGHTDATE, NAME, CARDNO)

VALUES ('T07', 'RN12K', '03-MAG-07', 'BILL', 50);

TICKETS table

CREDITS table

CARDS table

NOTIFY table

Comments

The trigger fires after the issue of a new ticket (insert in TICKETS table). As the previous one, the

execution granularity is row level because we need to know if the issued ticket is associated with a

card number (CARDNO IS NOT NULL), condition which fires the trigger (WHEN clause),

because in the other case we don't need the trigger to fire. Trigger is written in 3 different steps so

we can verify step by step the correctness. In particular at step 2 (update of STATUS in CARDS)

we check the updates even if the old status (stored in the variable VECCHIOSTATO) because in

some cases the update of that attribute on each execution of the trigger could be inefficient in term

of execution cost (in the case the flight make the change of the total count of miles but not implies

the exceed of the threshold to change STATUS).

Exercise #3

The following relations are given:

IMP (EMPNO, ENAME, JOB, SAL)

SUMMARY (JOB, NUM)

Database before the execution of the trigger

IMP table

SUMMARY table

Trigger to manage the insert in IMP

CREATE OR REPLACE TRIGGER INS_IMP

AFTER INSERT ON IMP

FOR EACH ROW

DECLARE

N NUMBER;

M NUMBER;

BEGIN

--- check if there are employees that

--- do the same job

SELECT COUNT(*) INTO N

FROM SUMMARY

WHERE JOB=:NEW.JOB;

IF(N=0) THEN

--- it's the first employee that

--- do that job

INSERT INTO SUMMARY(JOB, NUM)

VALUES(:NEW.JOB, 1);

ELSE

--- there is at least one employee

--- that already does that job

SELECT NUM INTO M

FROM SUMMARY

WHERE JOB=:NEW.JOB;

UPDATE SUMMARY

SET NUM=M+1

WHERE JOB=:NEW.JOB;

END IF;

END;

Update statement:

INSERT INTO IMP(EMPNO, ENAME, JOB, SAL) VALUES(4, 'NERI',

'CORRIERE', 750);

Database after the execution of the trigger

IMP table

SUMMARY table

Trigger to manage the update of JOB in IMP

CREATE OR REPLACE TRIGGER UPD_IMP

AFTER UPDATE OF JOB ON IMP

FOR EACH ROW

DECLARE

N NUMBER;

M NUMBER;

X NUMBER;

BEGIN

--- check if there are employees that

--- do the same job

SELECT COUNT(*) INTO N

FROM SUMMARY

WHERE JOB=:NEW.JOB;

--- increment the new JOB

IF(N=0) THEN

--- it's the first employee that

--- do that job

INSERT INTO SUMMARY(JOB, NUM)

VALUES(:NEW.JOB, 1);

ELSE

--- there is at least one employee

--- that already does that job

SELECT NUM INTO M

FROM SUMMARY

WHERE JOB=:NEW.JOB;

UPDATE SUMMARY

SET NUM=M+1

WHERE JOB=:NEW.JOB;

END IF;

--- decrement the old JOB

SELECT NUM INTO X

FROM SUMMARY

WHERE JOB=:OLD.JOB;

IF(X=1) THEN

--- there was only one person that did that job => delete the

record from SUMMARY

DELETE FROM SUMMARY

WHERE JOB=:OLD.JOB;

ELSE

--- there was other people that did that job => decrement NUM of

the record in SUMMARY

UPDATE SUMMARY

SET NUM=X-1

WHERE JOB=:OLD.JOB;

END IF;

END;

Update statement

UPDATE IMP SET JOB='CORRIERE' WHERE EMPNO=2;

Database after the execution of the trigger

IMP table

SUMMARY table

Comments

Both triggers are row level because we need to access the JOB field of the inserted or updated tuple

of the table IMP; for this reason we check if after the modification of IMP it exists a tuple (and if so

how many of them) with the same JOB value using the SUMMARY table despite the fact that the

check would be easier by counting the tuples in IMP; however row level triggers cannot access the

mutating table.

