Exercise #5

- Average
 - Input: a collection of (structured) textual csv files containing the daily value of PM10 for a set of sensors
 - Each line of the files has the following format:
 `sensorid, date, PM10 value (µg/m³)
 - Output: report for each sensor the average value of PM10

Exercise #6

- Max and Min
 - Input: a collection of (structured) textual csv files containing the daily value of PM10 for a set of sensors
 - Each line of the files has the following format:
 `sensorid, date, PM10 value (µg/m³)
 - Output: report for each sensor the maximum and the minimum value of PM10
Exercise #7

- Inverted index
 - Input: a textual file containing a set of sentences
 - Each line of the file has the following format

 sentence1|sentence2|sentence3

 - Output: report for each word w the list of sentences containing w
 - Do not consider the words "and", "or", "not"

Exercise #7 - Example

- Input file
 - Sentence#1: Hadoop Spark
 - Sentence#2: Hadoop Spark and Java
 - Sentence#3: Hadoop and Big Data

- Output pairs
 - (hadoop, [Sentence#1, Sentence#2, Sentence#3])
 - (spark, [Sentence#1, Sentence#3])
 - (java, [Sentence#2])
 - (big, [Sentence#3])
 - (data, [Sentence#3])

Exercise #8

- Total income for each month of the year and Average monthly income per year
 - Input: a (structured) textual csv files containing the daily income of a company
 - Each line of the files has the following format

 date|daily income

 - Output:
 - Total income for each month of the year
 - Average monthly income for each year

Exercise #8 - Example

- Input file
 - 2015-11-01 1000
 - 2015-11-02 1305
 - 2015-12-01 500
 - 2015-12-02 750
 - 2016-01-01 345
 - 2016-02-02 1445
 - 2016-02-03 200
 - 2016-02-04 500

- Output
 - (2015-12-1250) (2015-12-1250)
 - (2016-01-1450) (2016-01-1450)
 - (2016-02-700) (2016-02-700)