14/04/2016

Big data: architectures and Hadoop Internals
data analytics

Hadoop Internals

Based on the slides of prof. Pietro Michiardi “Hadoop Internals”
https://github.com/michiard/DISC-CLOUD-COURSE/raw/master/hadoop/hadoop.pdf

- Terminology - Recap

Terminology - Recap Terminology - Recap
Job: execution of a MapReduce application For instance, consider running “*Word
across a data set Count” across 20 splits
Task: execution of a Mapper or a Reducer on 1job

a split of data . .
Task Attempt: attempt to execute a task 20map tas'fs_ (on for each input split)

A user specified number of reduce tasks

At least 20 mapper tasks + number of reducers
tasks attempts will be performed

More if a machine crashes

Terminology - Recap

14/04/2016

Terminology - Recap

Task Attempts
Each task is attempted at least a maximum
number of times (the maximum number of
attempts per task is a parameter of the cluster
configuration)
If there is a temporary fault, the execution of each
task may initially fail but it succeeds in the
following attempts

Multiple attempts may occur in parallel (a.k.a.
speculative execution)

If there is enough available resources (i.e., there are
processorsin the idle state and enough main memory
to run new tasks) Hadoop can duplicate a task and
execute each “copy” of the task in a different node of
the cluster (containing the input split)
Useful if one node has some problems during the execution
of the task
The maximum number of duplicates per task is equal to the
number of replicas of the HDFS file system

Anatomy of a MapReduce Job
Run

..

Job Submission

JobClient class
The “submission” of the job in the Driver creates a
new instance of a JobClient
Then it calls the submitJob() on this class
Initial verifications before submitting the Job
Is there an output directory?
Are there any input splits?
Can | copy the JAR of the job to HDFS?
i.e., Can | copy/move code to data?

Anatomy of a MapReduce Job Run

L= JobTrackar Wachina

T inpmacace * 2 Got dobiD -1 -
H 1 Fun

- Jobclient JubTracker | 5 inalize Job
: = L : "

3: Copy Job 7: Haard
Resourcas 6: Retrievo Input SpIts (pigaybacks task)
TaskTrachar Machine
v R -
* psmres
4w Resoure
saurces
9 Launeh process
\ / 10: Aun task
3
Cnald T

sap/socncs
Task

Job Initialization

The JobTracker
Creates an object for the job
Encapsulating its tasks
Manages tasks’ status
This is where the scheduling happens
JobTracker performs scheduling by maintaining a
queue
Quevuing disciplines are pluggable

Job Initialization

Compute mappers and reducers
JobTracker retrieves input splits
Computed by JobClient
Determines the number of Mappers based on the
number of input splits

Reads the configuration information to set the
number of Reducers

Task Assignment

14/04/2016

Scheduling

..

Task Assignment

Heartbeat-based mechanism

TaskTrackers periodically send heartbeats to the
JobTracker

It means “TaskTracker is alive”
Heartbeat contains also information on
availability of the TaskTrackers to execute a task

Task Execution

Selecting a task

JobTracker first needs to select a job (i.e., Job
scheduling)
TaskTrackers have a fixed number of slots for map and
reduce tasks
JobTracker gives priority to map tasks
Data locality
JobTracker is topology aware (i.e., knows the
structure of the hardware and the location of the
HDFS blocks containing the data of interest)
Useful for map tasks
Unused for reduce tasks

Scheduling in detail

Now TaskTrackers can
Copy the JAR from HDFS
Create a local working directory
Create an instance of TaskRunner
TaskRunner launches a child java virtual
machine (JVM)
This prevents bugs from stalling the TaskTracker
A new child JVM is created for each input split

FIFO Scheduler (default in vanilla Hadoop)
First-come-first-served
Long jobs monopolize the cluster
Fair Scheduler (default in Cloudera)
Every user gets a fair share of the cluster capacity
over time
Jobs are placed into pools, one for each user

Users that submit more jobs have no more resources
than others

Can guarantee minimum capacity per pool

Failures

.

Handling Failures

Case 2: Hanging tasks

» TaskTracker notices no progress updates (timeout = 10
minutes)

TaskTracker kills the child JVvM
JobTracker is notified of a failed task

Avoid rescheduling the task on the same
TaskTracker

If a task fails more than maximum times, it is not
re-scheduled

If any task fails maximum times, the job fails

14/04/2016

Handling Failures

Processes can crash and machines can fail
Task Failure
Case 1: map or reduce task throws a runtime
exception
* The child JVM reports back to the parent TaskTracker

* TaskTracker logs the error and marks the TaskAttempt
as failed

Handling Failures

JobTracker Failure

Currently, Hadoop has no mechanism for this kind
of failure

In future (and commercial) releases

* Multiple JobTrackers

Use ZooKeeper as a coordination mechanisms
— High Availability

Handling Failures

TaskTracker Failure
Types
« Crash
* Running very slowly
Heartbeats will not be sent to JobTracker
JobTracker waits for a timeout (10 minutes), then it
removes the TaskTracker from its scheduling pool
JobTracker
* needs to reschedule even completed tasks
“ needs to reschedule tasks in progress
= may even blacklist a TaskTracker if too many tasks failed

Internals

——

Shuffle and Sort

The MapReduce framework guarantees the
input to every reducer to be sorted by key
The process by which the system sorts and transfers
map outputs to reducers is known as shuffle
Shuffle is the most important part of the
framework
Good understanding allows optimizing both the
framework and the executiontime of MapReduce
jobs
Subject to continuous refinements

Shuffle and Sort: the Map Side

The output of a map task is not simply written to
disk
In memory buffering
Pre-sorting
Circular memory buffer
100 MB by default
Threshold based mechanism to spill buffer content to
disk
Map output written to the buffer while spilling to disk
If buffer fills up while spilling, the map task is blocked

Shuffle and Sort: Map Side

Local
HDFS.
Datahode
-

MAP TASK
Partition,
Sort,

Spill to disk

([T}
L W (1] (]
PO Merge on disk

ner I

In-memory
eircular butfer

V..

Partitions Local Linux
FlleSystem

7

14/04/2016

To
Reducers

Shuffle and Sort: the Map Side

More on spills and memory buffer
Each time the buffer s full, a new spill is created
Once the map task finishes, there are many spills

Such spills are merged into a single partitioned
and sorted output file

Shuffle and Sort: the Map Side

Disk spills

Written in round-robin to a local dir

Output data is partitioned corresponding to the
reducers they will be sent to

Within each partition, data is sorted (in-memory)

Optionally, if there is a combiner, it is executed

just after the sort phase

Details on local spill files

Index File

Partition 1

Partition 2
oftset p
i

~ = +»[Keylengin

value length

Key length
value length
key

value

[keylength |
value length
. Koy

h value

ey length
value lengih
key
value

[keylength |
value length
Key
valu

Data File

} Record

Partition 1

Partition 2

14/04/2016

Shuffle and Sort: Reduce Side Shuffle and Sort: the Reduce Side

e R A The map output file is located on the local disk of
TaskTracker
AnotherTaskTracker (in charge of a reduce task)
) requires input from many other TaskTracker (that
finished their map tasks)
How do reducers know which TaskTrackers to fetch
map output from?
When a map task finishes it notifies the parent TaskTracker
The TaskTracker notifies (with the heartbeat mechanism)
the JobTracker
A thread in the reducer polls periodically the JobTracker
TaskTrackers do not delete local map output as soon
as a reduce task has fetched them

HTTP

Transters marge REDUCE

i) [l

ouTPUT
SPLIT

Shuffle and Sort: the Reduce Side

The map output are copied to the TraskTracker

running the reducer in memory(if they fit)
Otherwise they are copied to disk

Input consolidation
A background thread merges all partial inputs into
larger, sorted files

Sorting the input
When all map outputs have been copied a merge
phase starts

All map outputs are sorted maintaining their sort
ordering

