Big data: architectures and
data analytics

Spark

Apache Spark™ is a fast and general engine
for large-scale data processing
Spark aims at achieving the following goals in
the Big data context
Generality: diverse workloads, operators, job sizes
Low latency: sub-second

Fault tolerance: faults are the norm, not the
exception

Simplicity: often comes from generality

14/04/2016

Introduction to Spark

Spark History

Originally developed at the University of
California - Berkeley's AMPLab

2004 10
MapReduce paper Spark paper

‘ 2002 ‘ ‘ 2004 ‘ | 2006 ‘ ‘ 1008‘ | 2010 ‘ ‘ 10\1‘ | 014 ‘

2002 2008 2014
MapReduce @ Google Hadoop Summit Apache Spark top-level

2006
Hadoop @ Yahoo!

Spark: Motivations

MapReduce and Iterative Jobs

Iterative jobs, with MapReduce, involve a lot
of disk I/O for each iteration and stage

Mappers Reducers Mappers Reducers

MapReduce and Iterative Jobs

14/04/2016

Apache Spark: Motivation and

Disk I/O is very slow (even if itis a local I/O)

Mappers Reducers Mappers Reducers

From MapReduce to Spark

MapReduce: Iterative job

HDFS HDPFS HDFS HDFS
read write read write
— — e e

Input

Opportunity

Motivation
Using MapReduce for complex iterative jobs or
multiple jobs on the same data involves lots of
disk I/O

Opportunity

The cost of main memory decreased

Hence, large main memories are available in each server
Solution

Keep more data in main memory
Basic idea of Spark

From MapReduce to Spark

From MapReduce to Spark

Spark: Iterative job

HDFs

read . > W
e B B
Input

Data are shared between the iterations by
using the main memory

Or at least part of them
10 to 100 times faster than disk

MapReduce: Multiple analyses of the same
data |,

read — result1

DFs
4) result2
Ir;;Jt \:;é\ — result3

read

From MapReduce to Spark

Spark: Multiple analyses of the same data

HDFS — result 1
read 3
| — result2
|
Input Distributed? resuilt3

memory

Data are read only once from HDFS and stored
in main memory

Split of the data across the main memory of each
server

Spark: Resilient Distributed Data

Spark: Resilient Distributed Data

14/04/2016

sets (RDDs)

Data are represented as Resilient Distributed
Datasets (RDDs)
Partitioned/Distributed collections of objects
spread across the nodes of a clusters
Stored in main memory (when it is possible) or on
local disk
Spark programs are written in terms of
operations on resilient distributed data sets

Spark Computing Framework

Provides a programming abstraction (based
on RDDs) and transparent mechanisms to
execute code in parallel on RDDs

Hides complexities of fault-tolerance and slow
machines

Manages scheduling and synchronization of the
jobs

RDDs are built and manipulated through a set

of parallel
Transformations
map, filter, join, ...
Actions

count, collect, save, ...

RDDs are automatically rebuilt on machine

failure

sets (RDDs)

MapReduce vs Spark

Storage Disk only In-memory or on disk
Operations Mapand Map, Reduce, Join,
Reduce Sample, etc...

Executionmodel |Batch

Batch, interactive,
streaming

Programming Java
environments

Scala, Java, R and Python

MapReduce vs Spark

In-Memory RDDs Can Make a Big

Lower overhead for starting jobs
Less expensive shuffles

Two iterative Machine Learning algorithms:

K-means Clustering

41
0 50 100
Logistic Regression

096

0 20 40 60

Hadoop MR
Spark

150 sec

Hadoop MR
Spark

100 sec

Difference

Petabyte Sort Challenge

Hadoop MR Spark Spark

Record Record 1PB
Data Size 102578 1o0TB 1000 TB
Elapsed Time 72 mins 23 mins 234 mins
Nodes 2100 206 190 Da iDnE Gra
Cores 50400 physical 6592 virtualized | 6080 virtualized 100 TB sort
Cluster disk 3150 GB/s 618 Ga/e — benchmark
throughput (est.) record (tied
Sort Benchmark for 1< place)

Yes Yes No
Daytona Rules

dedicated data virtualized (EC2) |virtualized (EC2)
Network

center, 10Gbps | 10Gbps network | 10Gbps network
Sort rate 1.42 TB/min 4.27 TB/min 4.27 TB/min
Sort rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min

Spark Components

MLIib
Spark SQL Spark (Machine GraphX
structured Streaming learning and (Graph
data real-time Data processing)
mining)

Spark Core
YARN Scheduler
Standalone Spark (imeameElsy
Scheduler
Hadoop)

14/04/2016

Spark: Main components

Spark Components

Spark is based on a basic component (the

Spark Core component) that is exploited by

all the high-level data analytics components
This solution provides a more uniform and
efficient solution with respect to Hadoop where
many non-integrated tools are available

When the efficiency of the core component is

increased also the efficiency of the other

high-level components increases

Spark Components

Spark Core
Contains the basic functionalities of Spark
exploited by all components
Task scheduling
Memory management
Fault recovery

Provides the API that are used to create RDDs and
apply transformations and actions on them

Spark Components

Spark SQL structured data
This component that is used to interact with
structured datasets by means of SQL
It supports also
Hive Query Language (HQL)
It interacts with many data sources
Hive Tables
Parquet
JSON

Spark Components

14/04/2016

Spark Components

Spark Streaming real-time
It is used to process live streams of data in real-
time
The APIs of the Streaming real-time components
operated on RDDs and are similar to the ones
used to process standard RDDs associated with
“static” data sources

Spark Components

MLIib

It is a machine learning/data mining library

It can be used to apply the parallel versions of

many machine learning/data mining algorithms
Data preprocessing and dimensional reduction
Classification algorithms
Clustering algorithms
Itemset mining

Spark Schedulers

GraphX
A graph processing library
Provides many algorithms for manipulating
graphs
Subgraph searching
PageRank

Spark can exploit many schedulers to execute
its applications
Hadoop YARN
Standard scheduler of Hadoop
Mesos cluster
Another popular scheduler
Standalone Spark Scheduler
A simple cluster scheduler included in Spark

