

Spark

- Apache Spark™ is a fast and general engine for large-scale data processing
- Spark aims at achieving the following goals in the Big data context
 - Generality: diverse workloads, operators, job sizes
 - Low latency: sub-second
 - Fault tolerance: faults are the norm, not the exception
 - Simplicity: often comes from generality

Spark: Motivations

■ Disk I/O is very slow (even if it is a local I/O) Mappers Reducers Mappers Reducers Stage 1 Stage 2

Apache Spark: Motivation and Opportunity Motivation Using MapReduce for complex iterative jobs or multiple jobs on the same data involves lots of disk I/O Opportunity The cost of main memory decreased Hence, large main memories are available in each server Solution Keep more data in main memory Basic idea of Spark

Spark: Resilient Distributed Data sets (RDDs)

- Data are represented as Resilient Distributed Datasets (RDDs)
 - Partitioned/Distributed collections of objects spread across the nodes of a clusters
 - Stored in main memory (when it is possible) or on local disk
- Spark programs are written in terms of operations on resilient distributed data sets

Spark: Resilient Distributed Data sets (RDDs)

- RDDs are built and manipulated through a set of parallel
 - Transformations
 - map, filter, join, ...
 - Actions
 - count, collect, save, ...
- RDDs are automatically rebuilt on machine failure

Spark Computing Framework

- Provides a programming abstraction (based on RDDs) and transparent mechanisms to execute code in parallel on RDDs
 - Hides complexities of fault-tolerance and slow machines
 - Manages scheduling and synchronization of the jobs

MapReduce vs Spark

	Hadoop Map Reduce	Spark
Storage	Disk only	In-memory or on disk
Operations	Mapand Reduce	Map, Reduce, Join, Sample, etc
Executionmodel	Batch	Batch,interactive, streaming
Programming environments	Java	Scala, Java, R, and Python

MapReduce vs Spark

- Lower overhead for starting jobs
- Less expensive shuffles

In-Memory RDDs Can Make a Big Difference

- Two iterative Machine Learning algorithms:
 - K-means Clustering
 4.1
 0
 50
 100
 150 sec
 - Logistic Regression

Spark Components

- Spark is based on a basic component (the Spark Core component) that is exploited by all the high-level data analytics components
 - This solution provides a more uniform and efficient solution with respect to Hadoop where many non-integrated tools are available
- When the efficiency of the core component is increased also the efficiency of the other high-level components increases

22

Spark Components

- Spark Core
 - Contains the basic functionalities of Spark exploited by all components
 - Task scheduling
 - · Memory management
 - Fault recovery
 - ...
 - Provides the API that are used to create RDDs and apply transformations and actions on them

Spark Components

- Spark SQL structured data
 - This component that is used to interact with structured datasets by means of SQL
 - It supports also
 - Hive Query Language (HQL)
 - It interacts with many data sources
 - Hive Tables
 - Parquet
 - JSON

24

Spark Components

- Spark Streaming real-time
 - It is used to process live streams of data in realtime
 - The APIs of the Streaming real-time components operated on RDDs and are similar to the ones used to process standard RDDs associated with "static" data sources

25

Spark Components

- MLlib
 - It is a machine learning/data mining library
 - It can be used to apply the parallel versions of many machine learning/data mining algorithms
 - Data preprocessing and dimensional reduction
 - Classification algorithms
 - Clustering algorithms
 - Itemset mining
 -

26

Spark Components

- GraphX
 - A graph processing library
 - Provides many algorithms for manipulating graphs
 - Subgraph searching
 - PageRank
 -

Spark Schedulers

- Spark can exploit many schedulers to execute its applications
 - HadoopYARN
 - Standard scheduler of Hadoop
 - Mesos cluster
 - Another popular scheduler
 - Standalone Spark Scheduler
 - A simple cluster scheduler included in Spark

28