Are used to implement applications that produce top-level/summarized view of the data
- Numerical summarizations (Statistics)
- Inverted index
- Counting with counters

Goal
- Group records/objects by a key field and calculate a numerical aggregate (average, max, min, standard deviation, ...) per group
- Provide a top-level view of large input data sets

Motivation
- Few high-level statistics can be analyzed by domain experts to identify trends, anomalies, ...
Numerical Summarizations - structure

- Mappers
 - Output (key, value) pairs where
 - key is associated with the fields used to define groups
 - value is associated with the fields used to compute the aggregate statistics
- Reducers
 - Receive a set of numerical values for each "group-by" key and compute the final statistics for each "group"
- Combiners
 - If the computed statistic has specific properties (e.g., it is associative), combiners can be used to speed up performances

Numerical Summarizations

- Known uses
 - Word count
 - Record count
 - Min/Max/Count
 - Average/Median/Standard deviation

Inverted Index Summarizations

- Goal
 - Build an index from the input data to support faster searches or data enrichment
 - Map terms to a list of identifiers
 - Motivation
 - Improve search efficiency

Summarization Patterns

Inverted Index Summarizations
Inverted Index Summarizations - structure

Inverted Index Summarizations

- Most famous known use
 - Web search engine
 - Word – List of URLs (Inverted Index)

Summarization Patterns

Counting with Counters

- Goal
 - Compute count summarizations of data sets
 - Provide a top-level view of large data sets
- Motivation
 - Few high-level statistics can be analyzed by domain experts to identify trends, anomalies, ...

Counting with Counters - structure

- Mappers
 - Process each input record and increment a set of counters
- Map-only job
 - No reducers
 - No combiners
- The results are stored/printed by the Driver of the application
Counting with Counters

- Known uses
 - Count number of records
 - Count a small number of unique instances
 - Summarizations

Filtering Patterns

- Are used to select the subset of input records of interest
 - Filtering
 - Top K
 - Distinct

Filtering

- Goal
 - Filter out input records that are not of interest/keep only the ones that are of interest
 - Focus the analysis of the records of interest
- Motivation
 - Depending on the goals of your application, frequently only a small subset of the input data is of interest for further analyses

Filtering - structure

- The input of the mapper is a set of records
 - Key = primary key
 - Value = record
- Mappers
 - Output one (key, value) pair for each record that satisfies the enforced filtering rule
 - Key is associated with the primary key of the record
 - Value is associated with the selected record
- Reducers
 - The reducer is useless in this pattern
 - A map-only job is executed (number of reduce set to 0)
Filtering - structure

(\text{record_idX}, \text{recordX})
(\text{record_idU}, \text{recordU})

(\text{record_idY}, \text{recordY})
(\text{record_idW}, \text{recordW})

(\text{record_idZ}, \text{recordZ})
(\text{record_idA}, \text{recordA})

Mapper

Mapper

Mapper

Filtering

- Known uses
 - Record filtering
 - Tracking events
 - Distributed grep
 - Data cleaning

Filtering Patterns

Top K

- Goal
 - Select a small set of top K records according to a ranking function
 - Focus on the most important records of the input data set
- Motivation
 - Frequently the interesting records are those ranking first according to a ranking function
 - Most profitable items
 - Outliers

Top K - structure

- Mappers
 - Each mapper initializes an in-mapper top k list
 - k is usually small (e.g., 10)
 - The current top k-records of each mapper can be stored in main memory
 - Initialization performed in the setup method of the mapper
 - The map function updates the current in-mapper top k list

Top K - structure

- Mappers
 - The cleanup method emits the k (key, value) pairs associated with the in-mapper local top k records
 - Key is the "null key"
 - Value is a in-mapper top k record
Top K - structure

- Reducer
 - A single reducer is instantiated
 - It computes the final top k list by merging the local lists emitted by the mappers
 - All input (key, value) pairs have the same key
 - Hence, the reduce method is called only once

Top K

- Known uses
 - Outlier analysis (based on a ranking function)
 - Select interesting data (based on a ranking function)

Distinct

- Goal
 - Find a unique set of values/records
 - In some applications duplicate records are useless
- Motivation
 - Duplicates records are frequently useless

Filtering Patterns

- Distinct

Distinct - structure

- Mappers
 - Emit one (key, value) pair for each input record
 - Key = input record
 - Value = null value
- Reducers
 - Emit one (key, value) pair for each input (key, list of values) pair
 - Key = input key, i.e., input record
 - Value = null value
Distinct - structure

Distinct

- Known uses
 - Duplicate data removal
 - Distinct value selection