Data mining fundamentals

Elena Baralis
Politecnico di Torino

Data analysis

- Most companies own huge databases containing
 - operational data
 - textual documents
 - experiment results
- These databases are a potential source of useful information
Data analysis

- Information is “hidden” in huge datasets
 - not immediately evident
 - human analysts need a large amount of time for the analysis
 - most data *is never analyzed at all*

![Diagram showing the data gap](From R. Grossman, C. Kamath, V. Kumar, “Data Mining for Scientific and Engineering Applications”)

Data mining

- Non trivial extraction of
 - implicit
 - previously unknown
 - potentially useful information from available data
- Extraction is automatic
 - performed by appropriate algorithms
- Extracted information is represented by means of abstract models
 - denoted as *pattern*
Example: biological data

- Microarray
 - expression level of genes in a cellular tissue
 - various types (mRNA, DNA)
- Patient clinical records
 - personal and demographic data
 - exam results
- Textual data in public collections
 - heterogeneous formats, different objectives
 - scientific literature (PUBMed)
 - ontologies (Gene Ontology)

Biological analysis objectives

- Clinical analysis
 - detecting the causes of a pathology
 - monitoring the effect of a therapy
 ⇒ diagnosis improvement and definition of new specific therapies
- Bio-discovery
 - gene network discovery
 - analysis of multifactorial genetic pathologies
- Pharmacogenesis
 - lab design of new drugs for genic therapies

How can data mining contribute?
Data mining contributions

- Pathology diagnosis
 - classification
- Selecting genes involved in a specific pathology
 - feature selection
 - clustering
- Grouping genes with similar functional behavior
 - clustering
- Multifactorial pathologies analysis
 - association rules
- Detecting chemical components appropriate for specific therapies
 - classification

Knowledge Discovery Process

KDD = Knowledge Discovery from Data
Preprocessing

- **Data cleaning**
 - reduces the effect of noise
 - identifies or removes outliers
 - solves inconsistencies

- **Data integration**
 - reconciles data extracted from different sources
 - integrates metadata
 - identifies and solves data value conflicts
 - manages redundancy

Real world data is “dirty”
Without good quality data, no good quality pattern

Data mining origins

- **Draws from**
 - statistics, artificial intelligence (AI)
 - pattern recognition, machine learning
 - database systems

- **Traditional techniques are not appropriate because of**
 - significant data volume
 - large data dimensionality
 - heterogeneous and distributed nature of data

From: P. Tan, M. Steinbach, V. Kumar, "Introduction to Data Mining"
Analysis techniques

- Descriptive methods
 - Extract interpretable models describing data
 - Example: client segmentation
- Predictive methods
 - Exploit some known variables to predict unknown or future values of (other) variables
 - Example: “spam” email detection

Classification

- Objectives
 - prediction of a class label
 - definition of an interpretable model of a given phenomenon
Classification

- Approaches
 - decision trees
 - bayesian classification
 - classification rules
 - neural networks
 - k-nearest neighbours
 - SVM

- Requirements
 - accuracy
 - interpretability
 - scalability
 - noise and outlier management
Classification

- Applications
 - detection of customer propension to leave a company (churn or attrition)
 - fraud detection
 - classification of different pathology types
 - ...

Clustering

- Objectives
 - detecting groups of similar data objects
 - identifying exceptions and outliers
Clustering

• Approaches
 – partitional (K-means)
 – hierarchical
 – density-based (DBSCAN)
 – SOM

• Requirements
 – scalability
 – management of
 – noise and outliers
 – large dimensionality
 – interpretability

Applications
 – customer segmentation
 – clustering of documents containing similar information
 – grouping genes with similar expression pattern
 – ...

Association rules

- **Objective**
 - extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diapers, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diapers, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diapers, Milk</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Association rule**
 - diapers ⇒ beer
 - 2% of transactions contains both items
 - 30% of transactions containing diapers also contain beer

Applications

- market basket analysis
- cross-selling
- shop layout or catalogue design

Tickets at a supermarket counter

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coca Cola, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coca Cola, Diapers, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diapers, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coca Cola, Diapers, Milk</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Association rule**
 - diapers ⇒ beer
 - 2% of transactions contains both items
 - 30% of transactions containing diapers also contain beer
Other data mining techniques

- Sequence mining
 - ordering criteria on analyzed data are taken into account
 - example: motif detection in proteins
- Time series and geospatial data
 - temporal and spatial information are considered
 - example: sensor network data
- Regression
 - prediction of a continuous value
 - example: prediction of stock quotes
- Outlier detection
 - example: intrusion detection in network traffic analysis

Open issues

- Scalability to huge data volumes
- Data dimensionality
- Complex data structures, heterogeneous data formats
- Data quality
- Privacy preservation
- Streaming data