Association Rules Fundamentals

Elena Baralis, Tania Cerquitelli, Silvia Chiusano
Politecnico di Torino

Association rules

Objective
- extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Coke, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Coke, Diapers, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Coke, Bread, Diapers, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diapers, Milk</td>
</tr>
</tbody>
</table>

Association rule: diapers \(\Rightarrow\) beer
- 2% of transactions contain both items
- 30% of transactions containing diapers also contain beer

Association rule mining

- A collection of transactions is given
 - a transaction is a set of items
 - items in a transaction are not ordered
- Association rule: \(A, B \Rightarrow C\)
 - \(A, B\) = items in the rule body
 - \(C\) = item in the rule head
- The \(\Rightarrow\) means co-occurrence
 - not causality
- Example: coke, diapers \(\Rightarrow\) milk

Transactional formats

- Association rule extraction is an exploratory technique that can be applied to any data type
- A transaction can be any set of items
 - Market basket data
 - Textual data
 - Structured data
 - ...

Transactional formats

Textual data
- A document is a transaction
- Words in a document are items in the transaction

Data example
- Doc1: algorithm analysis customer data mining relationship
- Doc2: customer data management relationship
- Doc3: analysis customer data mining relationship social

Rule example
- customer, relationship \(\Rightarrow\) data, mining

Example from: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Definitions

- **Itemset** is a set including one or more items
 - Example: \{Beer, Diapers\}

- **k-itemset** is an itemset that contains \(k\) items
 - Example: \(\#(\{\text{Beer, Diapers}\}) = 2\)

- **Support** is the fraction of transactions that contain an itemset
 - Example: \(\text{sup}(\{\text{Beer, Diapers}\}) = 2/5\)

- **Frequent itemset** is an itemset whose support is greater than or equal to a \(\minsup\) threshold

Rule quality metrics

- Given the association rule \(A \Rightarrow B\)
 - \(A, B\) are itemsets
 - **Support** is the fraction of transactions containing both \(A\) and \(B\)
 \[\frac{\#(A, B)}{|T|} \]
 - \(|T|\) is the cardinality of the transactional database
 - a priori probability of itemset \(AB\)
 - rule frequency in the database

- **Confidence** is the frequency of \(B\) in transactions containing \(A\)
 \[\frac{\text{sup}(A, B)}{\text{sup}(A)} \]

Rule quality metrics: example

- From itemset \{Milk, Diapers\} the following rules may be derived
 - Rule: \(\text{Milk} \Rightarrow \text{Diapers}\)
 - support \(\text{sup} = 3/5 = 60\%
 - confidence \(\text{conf} = 3/4 = 75\%
 - Rule: \(\text{Diapers} \Rightarrow \text{Milk}\)
 - same support \(s = 60\%
 - confidence \(\text{conf} = 3/3 = 100\%

Association rule extraction

- Given a set of transactions \(T\), association rule mining is the extraction of the rules satisfying the constraints
 - support \(\geq \minsup\) threshold
 - confidence \(\geq \minconf\) threshold

- The result is
 - complete (all rules satisfying both constraints)
 - correct (only the rules satisfying both constraints)

- May add other more complex constraints

Association rule extraction

1. **Extraction of frequent itemsets**
 - many different techniques
 - level-wise approaches (Apriori, ...)
 - approaches without candidate generation (FP-growth, ...)
 - other approaches
 - most computationally expensive step
 - limit extraction time by means of support threshold

2. **Extraction of association rules**
 - generation of all possible binary partitioning of each frequent itemset
 - possibly enforcing a confidence threshold
Given d items, there are 2^d possible candidate itemsets.

Brute-force approach
- each itemset in the lattice is a candidate frequent itemset
- scan the database to count the support of each candidate
- match each transaction against every candidate
- Complexity $\sim O(|T| \cdot 2^d \cdot w)$
 - $|T|$ is number of transactions
 - d is number of items
 - w is transaction length

Improving Efficiency
- Reduce the number of candidates
 - Prune the search space
 - complete set of candidates is 2^d
- Reduce the number of transactions
 - Prune transactions as the size of itemsets increases
 - reduce $|T|$
- Reduce the number of comparisons
 - Equal to $|T| \cdot 2^d$
 - Use efficient data structures to store the candidates or transactions

"If an itemset is frequent, then all of its subsets must also be frequent"
- The support of an itemset can never exceed the support of any of its subsets
- It holds due to the antimonotone property of the support measure
 - Given two arbitrary itemsets A and B
 - if $A \subseteq B$ then $\sup(A) \geq \sup(B)$
- It reduces the number of candidates

Factors Affecting Performance
- Minimum support threshold
 - lower support threshold increases number of frequent itemsets
 - larger number of candidates
 - larger (max) length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases in dense data sets
 - may increase max length of frequent itemsets and traversals of hash tree
 - number of subsets in a transaction increases with its width
FP-growth Algorithm [Han00]
- Exploits a main memory compressed representation of the database, the FP-tree
 - high compression for dense data distributions
 - less so for sparse data distributions
 - complete representation for frequent pattern mining
 - enforces support constraint
- Frequent pattern mining by means of FP-growth
 - recursive visit of FP-tree
 - applies divide-and-conquer approach
 - decomposes mining task into smaller subtasks
- Only two database scans
 - count item supports + build FP-tree

Other approaches
- Many other approaches to frequent itemset extraction
 - some covered later
- May exploit a different database representation
 - represent the tidset of each item [Zak00]

Maximal vs Closed Itemsets

Effect of Support Threshold
- Selection of the appropriate minsup threshold is not obvious
 - If minsup is too high
 - itemsets including rare but interesting items may be lost
 - example: pieces of jewellery (or other expensive products)
 - If minsup is too low
 - it may become computationally very expensive
 - the number of frequent itemsets becomes very large

Interestingness Measures
- A large number of pattern may be extracted
 - rank patterns by their interestingness
- Objective measures
 - rank patterns based on statistics computed from data
 - initial framework [Agr94] only considered support and confidence
 - other statistical measures available
- Subjective measures
 - rank patterns according to user interpretation [Silb98]
 - interesting if it contradicts the expectation of a user
 - interesting if it is actionable

Confidence measure: always reliable?
- 5000 high school students are given
 - 3750 eat cereals
 - 3000 play basket
 - 2000 eat cereals and play basket
- Rule
 - play basket ⇒ eat cereals
 - sup = 40%, conf = 66.7%
- Problem caused by high frequency of rule head
 - negative correlation

Confidence measure: always reliable?
- 5000 high school students are given
 - 3750 eat cereals
 - 3000 play basket
 - 2000 eat cereals and play basket
- Rule
 - play basket ⇒ eat cereals
 - sup = 40%, conf = 66.7%
- Problem caused by high frequency of rule head
 - negative correlation
Correlation or lift

\[r: A \Rightarrow B \]

Correlation = \[
\frac{P(A, B)}{P(A)P(B)} = \frac{\text{conf}(r)}{\text{sup}(B)}
\]

- Statistical independence
 - Correlation = 1
- Positive correlation
 - Correlation > 1
- Negative correlation
 - Correlation < 1

Example

- Association rule

 play basket \Rightarrow eat cereals

 has corr = 0.89
 - negative correlation
 - but rule

 play basket \Rightarrow not (eat cereals)

 has corr = 1.34