What is Cluster Analysis?

- Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Intra-cluster distances are minimized
Inter-cluster distances are maximized

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Applications of Cluster Analysis

- Understanding
 - Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

- Summarization
 - Reduce the size of large data sets

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Notion of a Cluster can be Ambiguous

- How many clusters?
- Six Clusters
- Two Clusters
- Four Clusters

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Partitional Clustering

Original Points
A Partitional Clustering

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Hierarchical Clustering

K-means Clustering

• Partitional clustering approach
• Each cluster is associated with a centroid (center point)
• Each point is assigned to the cluster with the closest centroid
• Number of clusters, K, must be specified
• The basic algorithm is very simple

1: Select K points as the initial centroids.
2: assigned
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don’t change

Two different K-means Clusterings

Importance of Choosing Initial Centroids
Clustering fundamentals

To get SSE, we square these errors and sum them.

\[\text{SSE} = \sum_{i} \sum_{c} \text{dist}(m_c, x_i) \]

- \(m_c \) is a data point in cluster \(c \) and \(m_i \) is the representative point for cluster \(c \).
- \(x_i \) is a data point in cluster \(c \) and \(m_i \) is the representative point for cluster \(c \).
- One easy way to reduce SSE is to increase \(K \), the number of clusters. A good clustering with smaller \(K \) can have a lower SSE than a poor clustering with higher \(K \).

Limitations of K-means

- K-means has problems when clusters are of differing:
 - Sizes
 - Densities
 - Non-globular shapes

- K-means has problems when the data contains outliers.

Importance of Choosing Initial Centroids

Most common measure is Sum of Squared Error (SSE)

- For each point, the error is the distance to the nearest cluster.
- To get SSE, we square these errors and sum them.

Evaluating K-means Clusters

- For each point, the error is the distance to the nearest cluster.
- To get SSE, we square these errors and sum them.

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side.
- Sample and use hierarchical clustering to determine initial centroids.
- Select more than \(K \) initial centroids and then select among these initial centroids.
- Select most widely separated.
- Postprocessing
 - Bisecting K-means
 - Not as susceptible to initialization issues.

Pre-processing and Post-processing

- Pre-processing
 - Normalize the data
 - Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers.
 - Split 'loose' clusters, i.e., clusters with relatively high SSE.
 - Merge clusters that are 'close' and that have relatively low SSE.

Database and Data Mining Group
Limitations of K-means: Differing Sizes

Original Points
K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points
K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points
K-means (2 Clusters)

Overcoming K-means Limitations

One solution is to use many clusters. Find parts of clusters, but need to put together.

Overcoming K-means Limitations

Original Points
K-means Clusters
Hierarchical Clustering
- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree-like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering
- Do not have to assume any particular number of clusters
- Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering
- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm
- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 1. Compute the proximity matrix
 2. Let each data point be a cluster
 3. Repeat
 4. Merge the two closest clusters
 5. Update the proximity matrix
 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

How to Define Inter-Cluster Similarity
- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error
DBSCAN

- **DBSCAN** is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

- Varying densities
- High-dimensional data

Measures of Cluster Validity

- The validation of clustering structures is the most difficult task
- To evaluate the "goodness" of the resulting clusters, some numerical measures can be exploited
- Numerical measures are classified into two main classes
 - **External Index**: Used to measure the extent to which cluster labels match externally supplied class labels.
 - e.g., entropy, purity
 - **Internal Index**: Used to measure the goodness of a clustering structure without respect to external information.
 - e.g., Sum of Squared Error (SSE), cluster cohesion, cluster separation, Rand-Index, adjusted rand-index
External Measures of Cluster Validity: Entropy and Purity

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Entertainment</th>
<th>Financial</th>
<th>Foreign</th>
<th>Movie</th>
<th>National</th>
<th>Sporty</th>
<th>Entropy</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>205</td>
<td>894</td>
<td>23</td>
<td>27</td>
<td>3.2977</td>
<td>0.7671</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>7</td>
<td>29</td>
<td>48</td>
<td>27</td>
<td>2</td>
<td>3.677</td>
<td>0.7504</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>17</td>
<td>15</td>
<td>2.9512</td>
<td>0.9704</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>302</td>
<td>5</td>
<td>107</td>
<td>25</td>
<td>2</td>
<td>3.6467</td>
<td>0.4546</td>
</tr>
<tr>
<td>5</td>
<td>311</td>
<td>22</td>
<td>5</td>
<td>78</td>
<td>13</td>
<td>25</td>
<td>1.8879</td>
<td>0.7324</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>104</td>
<td>12</td>
<td>152</td>
<td>48</td>
<td>22</td>
<td>3.1022</td>
<td>0.5505</td>
</tr>
<tr>
<td>Total</td>
<td>354</td>
<td>555</td>
<td>341</td>
<td>443</td>
<td>738</td>
<td>708</td>
<td>3.154</td>
<td>0.7401</td>
</tr>
</tbody>
</table>

Entropy: For each cluster, the class distribution of the data is calculated first, i.e., for cluster \(j \) we compute \(p_{ij} \), the probability that a member of cluster \(j \) belongs to class \(i \) as follows:

\[
p_{ij} = \frac{n_{ij}}{n_j},
\]

where \(n_{ij} \) is the number of values in class \(i \) and \(n_j \) is the number of values in cluster \(j \). Then using this class distribution, the entropy of each cluster \(j \) is calculated using the standard formula:

\[
S_j = -\sum_i p_{ij} \log_2 p_{ij},
\]

where \(i \) is the number of classes. The total entropy for a set of clusters is calculated as the sum of the entropy of each cluster weighted by the size of each cluster: i.e.,

\[
S = \sum_j \frac{S_j}{n_j},
\]

where \(n_j \) is the size of cluster \(j \), \(n \) is the number of clusters, and \(n \) is the total number of data points.

Purity: Using the terminology derived for entropy, the purity of cluster \(j \), is given by purity \(= \max_{i \neq j} p_{ij} \) and the overall purity of a clustering by purity \(= \frac{\sum_i n_i p_{ij}}{n} \).

Internal Measures: Cohesion and Separation

- A proximity graph based approach can also be used for cohesion and separation.
- Cluster cohesion is the sum of the weights of all links within a cluster.
- Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

Final Comment on Cluster Validity

“The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage.”

Algorithms for Clustering Data, Jain and Dubes