24/05/2017

Apache Storm

Introduction to Apache Storm

T

24/05/2017

Apache Storm

Apache Storm™ is a distributed Y STORM

framework that is used for real-time

processing of data streams
E.g., Tweets analysis, Log processing, ...

Currently, it is an open source project of

the Apache Software Foundation
http://storm.apache.org/

It is implemented in Clojure and Java

12 core committers, plus ~ 70 contributors

Apache Storm history

Storm was first developed by Nathan Marz at
BackType
BackType was a company that provided social
search applications
Later (2011), BackType was acquired by
Twitter, and now it is a critical part of their
infrastructure
Currently, Storm is a project of the Apache
Software Foundation (since 2013)

http://storm.incubator.apache.org/

Typical use cases

Stream processing
Storm is used to process streams of data in real
time
Continuous computation
Storm can do continuous computation on data
streams in real time
This might require processing each message as it comes
or creating small batches over a little time
An example of continuous computation is
streaming trending topic detection on Twitter

Typical use cases

Distributed RPC

Storm can be used to parallelize an intense
function (e.g., a query) so that you can compute it
in real-time

Real-time analytics

Storm can analyze and extract insights or
complex knowledge from data that come from
several real-time data streams

24/05/2017

Storm adoption

Twitter
Personalization, search, revenue optimization, ...

200 nodes, 30 topologies, 50B msg/day, avg
latency <goms, Jun 2013

Yahoo
User events, content feeds, and application logs
320 nodes (YARN), 130k msg/s, June 2013

Storm adoption

Spotify
recommendation, ads, monitoring, ...

v0.8.0, 22 nodes, 15+ topologies, 200k msg/s, Mar
2014

Alibaba
Cisco
WeatherChannel

24/05/2017

24/05/2017

Features of Storm

Storm is
Distributed
Horizontally scalable
Fast
Fault tolerant
Reliable - Guaranteed data processing
Easy to operate
Programming language agnostic

Features of Storm

Distributed

Storm is a distributed system than can runon a
cluster of commodity servers

Horizontally scalable

Storm allows adding more servers (nodes) to your
Storm cluster and increase the processing
capacity of your application

It is linearly scalable with respect to the number of
nodes, which means that you can double the
processing capacity by doubling the nodes

Features of Storm

Fast

Storm has been reported to process up to 1
million tuples per second per node

Fault tolerant

Units of work are executed by worker processes in
a Storm cluster. When a worker dies, Storm will
restart that worker (on the same node or on to
another node)

Features of Storm

Reliable - Guaranteed data processing

Storm provides guarantees that each message
(tuple) will be processed at least once

In case of failures, Storm will replay the lost tuples

It can be configured to process each tuple only
once

Easy to operate
Storm is simple to deploy and manage

Once the cluster is deployed, it requires little
maintenance

24/05/2017

Features of Storm

Programming language agnostic
Even though the Storm platform runs on Java
Virtual Machine, the applications that run over it
can be written in any programming language that
can read and write to standard input and output
streams

13

Storm vs Hadoop

HADOOP STORM
Batch processing Real-time processing
Jobs runs to completion = Topologies run forever

14

24/05/2017

24/05/2017

Storm vs Hadoop

HADOOP STORM
Batch processing Real-time processing
Jobs runs to completion = Topologies run forever
Scalable Scalable
Guarantees no data loss Guarantees no data loss
Open Source Open Source

15

Storm vs Hadoop

HADOOP STORM
Batch processing Real-time processing
Jobs runs to completion = Topologies run forever
Scalable Scalable
Guarantees no data loss Guarantees no data loss
Open Source Open Source

Batch processing of Big Data Fast, real-time processing of
data streams

16

24/05/2017

The motivation of Storm

.

DNS Queries: Domain frequency
example

Given a stream of DNS queries, compute the
frequency of each domain

DNS Queries: Domain frequency

example

(2.12.12.2, “foo.com”)

(2.2.2.2, “bar.net”) Stream of
(3.3.3.3, “foo.com”) DNS queries
(4.4.4.4, “foo.com”)

(5.5.5.5, “bar.net”)

DNS Queries: Domain frequency

example

(1.1.1.1, “foo.com”)

(2.2.2.2, “bar.net”) Stream of
(3.3.3.3, “foo.com”) DNS queries
(4.4.4.4, “foo.com”)

(5.5.5.5, “bar.net”)

(“foo.com”, 3) Frequency of
(“bar.net”, 2) each domain

24/05/2017

10

24/05/2017

Functional programming and the

Domain frequency example

By using functional programming the word
count problem can be split in “isolated” sub-
problems

Each sub-problem is a function

It receives an input data (stream)
And emits output data (stream)

Functional programming and the

Domain frequency example

1.1.1.1, “foo.com”

Stream of (o ,,)
. (2.2.2.2, “bar.net”)

DNS queries “ ,,
N (3.3.3.3, “foo.com”)
4.4.4, “foo.com”
Data (444 b ")
(5.5.5.5, “bar.net”)

11

Functional programming and the

Domain frequency example

Stream of
DNS queries

Data

Stream of
domains

(1.12.12.1, “foo.com”)
(2.2.2.2, “bar.net”)
(3.3.3.3, “foo.com”)
(4.4.4.4, “foo.com”)
(5.5.5.5, “bar.net”)

GA£(.)

(“foo.com”)
(“bar.net”)
(“foo.com”)
(“foo.com”)
(“bar.net”)

Functional programming and the

Domain frequency example

Stream of
DNS queries

Data

Stream of
domains

(1.1.1.1, “foo.com”)
(2.2.2.2, “bar.net”)
(3.3.3.3, “foo.com”)
(4.4.4.4, “foo.com”)
(5.5.5.5, “bar.net”)

()

“foo.com”)

“barnet) g(..)

“foo.com”)
“bar.net”)

(

(

(“foo.com”) (“foo.com”, 3) | Frequency of
((“bar.net”, 2) |each domain
(

24/05/2017

12

24/05/2017

Functional programming and the

Domain frequency example

The functional programming solution can be
represented as

9(f(Data)))

Data = input DNS queries
f(..) = it extracts the domain from each input DNS
query

g(..) = it computes the occurrences of each
domain

Clojure

Clojure is a dialect of Lisp that targets the
JVM
It is a dynamic, compiled programming
language

Predominantly functional programming
Many interesting characteristics and value
propositions for software development,
notably for concurrent applications
Storm'’s core is implemented in Clojure

13

Clojure

The Word Count example in Clojure
frequencies (map second (Data))

g f

frequencies and map are two predefined
functions of Clojure

map is used to “select” a field of a tuple of the
input data

frequencies is used to compute the occurrences of
each value of the input data

Scaling up

Clojure, Scala, Java, or many other languages
can be used to turn the previous code into a
multi-threaded application that utilizes all
cores on your server
But what if even a very big machine is not
enough for your application?

Too many real-time data to process
Moreover, you must manage failures

24/05/2017

14

Scaling up

You can use Hadoop
It is distributed, fault-tolerant, and horizontally
scalable
But Hadoop is not designed for real-time and
continuous processing
It is not able to process streams of data in real-

Scaling up

time

24/05/2017

15

