24/05/2017

Apache Storm: Advanced
Developing Applications

Windowing

Windowing

Storm has support for processing tuples that
fall within a window
The system processes one window of tuples at a
time
Windows are specified with the following two
parameters
Window length
The number of tuples or time duration of the windows
Sliding interval
The interval at which the windowing slides

Sliding Window

Tuples are grouped in windows and window
slides every sliding interval

A tuple can belong to more than one window
Example

A time duration based sliding window with length 10
secs and sliding interval of 5 seconds

|e1e2e3|ese5ebe7|e8egeio|...

0 5 10 15 <-time
|<---------- W1 --------- >|
|------------ W2 -----mmo >|

24/05/2017

Tumbling Window

Tuples are grouped in a single window based on
time or count

Any tuple belongs to only one of the windows
Example

A time duration based tumbling window with length 5
secs

|e1e2e3|ese5ebe7|e8egelo|...
0 5 10 15 <-time

|<-- wi-->|<----W2---->|<-- w3--->|...

BaseWindowedBolt

The BaseWindowedBolt abstract class must
be implemented to manage “windows” of
tuples

The main methods of this class are similar to
the ones of the standard bolts

But the execute() method receives a set of tuples
as parameter
One set of tuples for each windows

24/05/2017

withWindow()

The withWindow(..) methods are used to
specify for each "window bolt” the
characteristics of the windows

withWindow()

withWindow(Count windowLength, Count slidingInterval)

Tuple count based sliding window that slides after

‘slidingInterval’ number of tuples
withWindow(Count windowLength)

Tuple count based window that slides with every incoming tuple
withWindow(Count windowLength, Duration
slidingInterval)

Tuple count based sliding window that slides after

‘slidingInterval time duration
withWindow(Duration windowLength, Duration
slidingInterval)

Time duration based sliding window that slides after
‘slidingInterval time duration

24/05/2017

withWindow()

withWindow(Duration windowLength)
Timle duration based window that slides with every incoming
tuple
withRNindow(Duration windowLength, Count
slidingInterval)
Time duration based sliding window configuration that slides
after ‘slidingInterval’ number of tuples
withTumblingWindow(BaseWindowedBolt.Count count)
Count based tumbling window that tumbles after the specified
count of tuples
withTumblingWindow(BaseWindowedBolt.Duration
duration)

Time duration based tumbling window that tumbles after the
specified time duration

Sliding Window: Example

Define a topology with
A spout that emits a stream of random integers

A sliding window bolt that sum the values of each
window
Set

Window type: Sliding window

Tuples per window: 2 tuples

Sliding interval: 1 tuple

10

24/05/2017

Sliding Window: Example

package........
Import ...

public class SlidingWindowTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("streamlIntegers", new EmitRandomIntSpout(), 1);

builder.setBolt("sumSlidingWindowBolt",
new SumWindowBolt().withWindow(new Count(2), new Count(1)), 1)
.shuffleGrouping("streamintegers");

11

Sliding Window: Example

package........
Import

public class SlidingWindowTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("streamlintegers", new EmitRandomIntSpout(), 1);

1

builder.setBolt("sumSlidingWindowBolt"
new SumWindowBolt().withWindow(new Count(2), new Count(1)), 1)

.shuferGroupmg("styﬁlntegers");

Definition the characteristics of the sliding window

12

24/05/2017

Sliding Window: Example

package........
Import ...

public class SlidingWindowTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("streamlIntegers", new EmitRandomIntSpout(), 1);

builder.setBolt("sumSlidingWindowB
new SumWindowBolt().withWindow(new Count(zi new Count(z)), 1)
.shuffleGrouping("stregmintegers");

Number of tuples per window

13

Sliding Window: Example

package........
Import

public class SlidingWindowTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("streamlintegers", new EmitRandomIntSpout(), 1);
builder.setBolt("sumSlidingWindowBolt",
new SumWindowBolt().withWindow(new Count(2),[new Count(1)
.shuffleGrouping("streaminteger

Sliding interval

14

24/05/2017

Sliding Window: Example

Config conf = new Config();
conf.setDebug(false);
conf.setNumWorkers(3);

if (args != null && args.length > 0) {
String topologyName = args[o];

StormSubmitter.submitTopology(topologyName, conf,
builder.createTopology());
}else {
System.out.printin(
"storm jar target/example-1.0.0.jar
storm_example.slidingwindow.SlidingWindowTopology <topology name>");

}

15

Sliding Window: Example

public class SumWindowBolt extends BaseWindowedBolt §
private OutputCollector collector;

@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector
collector) {

this.collector = collector;

}
@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
}

16

24/05/2017

Sliding Window: Example

public class SumWindowBolt extend# BaseWindowedBolt { ‘|

private OutputCollector collector;

This bolt extends the BaseWindowBolt

@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector
collector) {

this.collector = collector;

}
@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
}

17

Sliding Window: Example

@Override
public void execute(TupleWindow inputWindow) {
int sum = o;
List<Tuple> tuplesinWindow = inputWindow.get();

for (Tuple tuple : tuplesinWindow) {

sum += (int) tuple.getinteger(o);

}

System.out.printIn(sum);

18

24/05/2017

Sliding Window: Example

@Override

|‘ public void execute(TupleWindow inputWindow) § ‘|
Nt sum = o;
List<Tuple> tuplesinWindo

= inputWindow.get();

for (Tuple tuple : tuplesinWindow) {
sum += (int) tuple.getinteger(o);

}

The execute method receives a set of tuples

System.out.printin(sum); (all the tuples of a window)

19

Sliding Window: Example

@Override
public void execute(TupleWindow inputWindow) {
int sum = o;
List<Tuple> tuplesinWindow = inputWindow.get();

for (Tuple tuple : tuplesinWindow) {
sum += (int) tuple.getinteger(o);

}

System.oUt-prinunN

5 Analyze the set of tuples and compute the
result for this window

20

24/05/2017

10

24/05/2017

Transactional topologies

EE— 0000 oo

Transactional topologies

Storm allows implementing reliable
topologies
Tuples are replayed if an error occurs

It provides an “at least once processing
guarantee”

How can we avoid processing the same tuple
multiple times?

Storm provides two solutions

Transactional topologies (deprecated)
Trident

11

Transactional topologies

Transactional topologies enable getting
exactly once messaging semantic
You can do things like counting in a fully-accurate,
scalable, and fault-tolerant way
The core idea behind transactional topologies
is to provide a strong ordering on the
processing of data

Transactional topologies: Sol. #1

The simplest (inefficient) solution consists in
processing one tuple at a time
Move on the next tuple only when the current

tuple has been successfully processed by the
topology

Each tuple is associated with a transaction id

If the tuple fails and needs to be replayed, then it
is emitted with the exact same transaction id

Atransaction id is an integer that increments for
every tuple

24/05/2017

12

Transactional topologies: Sol. #1

The strong ordering of tuples gives you the
capability to achieve exactly-once semantic
even in the case of tuple replay

Transactional topologies: Sol. #1

Suppose you want to do a global count of the
tuples in the analyzed stream and store itin a
database every time the count is updated
Instead of storing just the count in the database, you
store the count and the latest transaction id
When your code updates the count, it should
update the count only if the transaction id in the
database differs from the transaction id of the
current tuple

i.e., if the previous tuple has been successfully
processed

24/05/2017

13

Transactional topologies: Sol. #1

Consider the two cases

The transaction id in the database is different than
the transaction id of the current tuple
Because of the strong ordering of transactions, we know for

sure that the current tuple has not been already processed
and hence it is not represented in the current count

We can safely increment the count and update the transaction id
The transaction id is the same as the transaction id of
the current tuple

It means we already processed this tuple

We must skip the update of count

The tuple must have failed after updating the count and the
transaction id in the database but before reporting success back to
Storm

27

Transactional topologies: Sol. #1

Having to wait for each tuple to be
completely processed before moving on to
the next one this solution is significantly
inefficient
Moreover, this design makes no use of the
parallelization capabilities of Storm

At least in the bolt component
Finally, it entails a huge amount of database
calls

At least one per tuple

28

24/05/2017

14

tuple

tuple

