Trident

Trident

Trident is a high-level abstraction for doing

real-time computing on top of Storm

Trident has consistent, exactly-once

semantics

Trident has many high-level functionalities
Filters, Maps, Joins, Aggregations, Grouping,
Functions, ..

Developing complex applications becomes easier

24/05/2017

Trident topologies

. A8

Trident State

Trident adds primitives for doing stateful,
incremental processing on top of databases
or persistence store
It has first-class abstractions for reading from and
writing to stateful sources
The state can either be stored
internally to the topology
E.g., kept in-memory
or externally to the topology
E.g., stored in a database like Memcached or Cassandra

Trident State

Trident

Trident manages state in a fault-tolerant way

State updates are idempotent in the face of
retries and failures

This lets you reason about Trident topologies as if
each message were processed exactly-once

Trident topologies are (slightly) slower than
the standard ones
Given by the overhead introduced by exactly-once
semantics and the state management
However, also trident topologies can manage
millions of messages per second

Streams

Analogously to standard topologies, also the
core data model inTrident is the Stream
A stream is partitioned among the nodes in
the cluster, and operations applied to a
stream are applied in parallel across each
partition
Trident processes each stream as a series of
batches

Itis based on batch spouts and bolts

24/05/2017

Streams

the cow jumped cver the moon e cow |umped over the mosn

the man wen i the stare and bought some candy ‘ihe man weni ta the siore and bought some candy

four score and seven years ago four Bcors and seven years ago
haw many apoles can you eat
he cow jumped over the moon
Ihe man went 1 he staré and bough same candy
Tour score and seven years ago ow many apgles can you eat
haw many apples can you eal v Cow jumped Gver e moon
e cow fumped ver the oon e man wer 1 he siore 47 baugh! some candy
Ihe M0 wen 1 e s5aré and bouGH 80Me CANdY Tour score and seven years g0

Batch 1

e many apgles can you et

Batch 2

Each tuple is a string in this
example [The cow [umped over the maon

[Em manwont 0 sor ang sough som cancy

Bateh 3

Trident

Trident provides a batch processing APl to
process batches of tuples
It provides a set of functions that are applied on one
batch at a time in isolation and emit “local” results
Trident provides also a set of functions for doing
aggregations across batches and persistently
storing those aggregations
i.e., It allows aggregating the “local” results generated
by analyzing each batch in a “global” result associated
with the entire stream

Trident topologies

Define Trident topologies

Trident topologies

Trident topologies are based on
Spouts
Only batch spouts are used by Trident
Streams
Defined on top of spouts
High-level operations applied on top of streams

These operations are automatically transformed in bolts
by Trident

Trident topologies are defined by using the
TridentTopology class
The streams of the topology are defined by
using the newStream(..) method of
TridentTopology

It defines a stream on top of a batch spout
The rest of the topology is defined by means
of the high-level operations provide by
Trident

Trident topologies: Example

24/05/2017

Trident topologies: Example

In this example we create a simple Trident
topology that
Has one spout emitting a sequence of words
This spout is based on a class provided by Storm
Has one stream defined on top of the spout

Prints the content of the stream on the standard
output

package ...
import ...

public class TridentExample {
public static void main(String[] args) throws Exception {

/| Define a spout that continuous emits the same sequence of words
FixedBatchSpout spout = new FixedBatchSpout(new Fields("word"), 4,
new Values("word1"), new Values("word2"),
new Values("word3"), new Values("words"),
new Values("words"), new Values("word6"),
new Values("word7"), new Values("word8"),
new Values("wordg"), new Values("word10"));

spout.setCycle(true);

Trident topologies: Example

Trident topologies: Example

package
import ...

public class TridentExample { Schema of the emitted tuples

public static void main(String[] args) throws Exception {

|/ Define a spout that continuous emits the same sequencé of word

FixedBatchSpout spout = new FixedBatchSpou - 4,
new Values("word1"), new Values("word2"),
new Values("word3"), new Values("word4"),
new Values("words"), new Values("word6"),
new Values("word7"), new Values("word8"),
new Values("wordg"), new Values("word10"));

spout.setCycle(true);

package
import ...

public class TridentExample { ‘ Max number of tuples per batch

public static void main(String[] args) throws Exception {

/I Define a spout that continuous emits the same sequence of words,

FixedBatchSpout spout = new FixedBatchSpout(new Fields("word"),
new Values("word1"), new Values("word2"),
new Values("word3"), new Values("words"),
new Values("words"), new Values("word6"),
new Values("word7"), new Values("word8"),
new Values("wordg"), new Values("word10"));

spout.setCycle(true);

Trident topologies: Example

package
import ...

Emitted tupl
public class TridentExample {

public static void main(String[] args) throws Exception

/I Define a spout that continuous emitstfie same sequence of words
FixedBatchSpout spout = new FixedBatchSpout(new Fields("word"), 4,
new Values("word1"), new Values("word2"),
new Values("word3"), new Values("words4"),
new Values("words"), new Values("word6"),
new Values("word7"), new Values("word8"),
new Values("wordg"), new Values("word10")),

spout.setCycle(true);

Trident topologies: Example

TridentTopology topology = new TridentTopology();

/| Define a stream of the topology
Stream outputStream = topology.newStream("spouti", spout);

/I Print on the standard output the tuples emitted by outputStream
outputStream.peek(new Consumer() {
@0Override
public void accept(TridentTuple input) {
System.out.printin(input.getStringByField("word"));
}
i

Trident topologies: Example

24/05/2017

Trident topologies: Example

TridentTopology topology = new TridentTopology();

/I Define a stream of the topolog
Stream outputStream = topology.newStream("spout1", spout);

[/ Print on the standard output tha tuples emitted by outputStream

outputStream.peek(new Consume
@Override

public void accept(TridentTupl

System.out.printin(in,

input) {

st.getStringByField("word"));
1

Di

Definition of a stream based on spout

TridentTopology topology = new TridentTopology();

/| Define a stream of the topology
Stream outputStream = topology.newStream("spout1", spout);

/[Print on the standard output the tuples emitted by outputStream
outputStream.peek(new Consumer() {
@0Override
public void accept(TridentTuple input) {
System.out.printIn(input.getStringByField("word"));

}

A

i

Application of the peek operation on the stream.
In this case the peek operation is used to print the tuples of the stream on
the standard output.

Trident topologies: Example

Trident topologies: Example

Config conf = new Config();
conf.setDebug(false);
conf.setNumWorkers(3);

if (args != null && args.length > o) {
String topologyName = args[o];
StormSubmitter.submitTopology(topologyName, conf,
topology.build());
Yelse {
System.out.printIn("storm jar target/example-1.0.0.jar
TridentExample <topology name>");

Config conf = new Config(); Configuration of the topolo
conf.setDebug(false); / 4 —

conf.setNumWorkers(3);

if (args != null && args.length > 0) {
String topologyName = args[o];
StormSubmitter.submitTopology(topologyName, conf,
topology.build());
Yelse {
System.out.printIn("storm jar target/example-1.0.0.jar
TridentExample <topology name>");

Trident topologies: Example

Config conf = new Config(); [_submission of the topology

conf.setDebug(false);
conf.setNumWorkers(3);

if (args != null && args.length > 0) {
String topologyName = args[e];
StormSubmitter.submitTopology(topologyName, conf,
topology.build());

telse {

System.out.printIn("storm jar target/example-1.0.0.jar
TridentExample <topology name>");

Operations in Trident

Classes of Operations in Trident

There are five classes of operations in Trident

Operations that apply locally to each partition and
cause no network transfer

Repartitioning operations that repartition a
stream but do not change the contents (involves
network transfer)

Aggregation operations that do network transfer
as part of the operation

Operations on grouped streams
Merges and joins

Partition-local operations

24/05/2017

Partition-local operations

—~———

Partition-local operations

Partition-local operations are applied on each
batch partition in isolation

They generate one result for each batch partition
They involve no network transfer

The tuples of each batch partition are all in the

same node and the generated results are “kept” in
the same node

The provided partition-local operations are:
peek
filter
project
map and flatMap
each
min and minBy
max and maxBy
partitionAggregate
Windowing

peek

peek

peek() is used to perform an action on each
tuple of the flow as they flow through the
stream
It does not chance the values of the tuples

The output of this operation (in terms of tuples) is equal

toits input
It is usually used for debugging to see the
tuples as they flow at a certain pointin a
pipeline of Trident operations

The peek() method has one single parameter

The parameter is an object of a class
implementing the Consumer interface
The publicvoid accept(TridentTuple input) method must
be implemented

It contains the action that you want to execute based on the
content of the input tuple

peek: Example

INPUT STREAM STANDARD OUTPUT
test
test the
e Storm
Storm

24/05/2017

peek: Example

/| Define a stream of the topology
Stream outputStream = topology.newStream("spouta", spout);

/[Print on the standard output the tuples emitted by outputStream
outputStream.peek(new Consumer() {
@0Override
public void accept(TridentTuple input) {
System.out.printIn(input.getStringByField("word"));

}
i

This peek operation prints the content of each tuple of
the input stream on the standard output

filter

filter() is used to select a subset of the input
tuples based on a constraint
Only the tuples satisfying the constraint are
emitted by the filter operation and are sent to the
next operation of the topology

The schema of the output stream is equal to the
schema of the input stream

filter

The filter() method has one single parameter

The parameter is an object of a class extending
the BaseFilter abstract class
The publicboolean isKeep(TridentTuple tuple) method
must be implemented
It contains the logic that is used to check if the constraint is
satisfied
It returns true if the tuple satisfies the constraint/filter. Otherwise,
it returns false

filter: Example

INPUT STREAM OUTPUT STREAM
test test
the the

Storm

filter: Example

Stream outputStream = topology

.newStream("spout1", spout).filter(new SelectionRule());

This filter emits only the tuples that satisfy the constraint
specified in the SelectionRule

filter: Example

package ...
import ...

public class SelectionRule extends BaseFilter {

Override
public boolean isKeep(TridentTuple tuple) {
if (tuple.getStringByField("word").charAt(o) =="t')
return true;

else
return false;

}

This method implements the constraint/filter that we
want to apply

24/05/2017

project

project() is used to select a subset of fields of
the input tuples

The project() method has one single parameter
The parameter is the list of fields that we want to keep

project: Example

INPUT STREAM OUTPUT STREAM
Paoclo Garza Paolo
Andrea Rossi Andrea
Paolo Bianchi Paolo

project: Example

Stream outputStream = topology

.newStream("spout1", spout).project(new Fields("name"));

This operation emits a new stream
containing only the name field

map() is used to transform the tuples

It returns a stream consisting of the result of

applying the given mapping function on the tuples
of the input stream

The mapping function is applied on one tuple at a time

It is a one-to-one transformation applied on the
input tuples

The tuples emitted by the map() operation
have the same number of fields of the input
tuples
Also the names of the fields are the same
But the data types of the fields of the emitted
tuples can be different from those of the
input tuples
E.g., you can apply a map function that receives
as input a string and returns its length (i.e., it is
applied on a string and returns a long)

The map() method has one single parameter

The parameter is an object of a class

implementing the MapFunction interface
The public Values execute(TridentTuple input)
method must be implemented

It applies a transformation on the input tuple and
returns the new one

24/05/2017

map: Example

INPUT STREAM OUTPUT STREAM
test TEST
the THE

Storm STORM

map: Example

Stream outputStream = topology

.newStream("spouta", spout;.map(new UpperClass());

This map operation applies the transformation specified in UpperClass
on the tuples of the input stream and emits a new stream

map: Example

I £

package ...
import ...

public class UpperClass implements MapFunction {
Override

public Values execute(TridentTuple input) {
return new Values(input.getStringByField("word").toUpperCase());

}

This method returns a new tuple where the value of the
word field is converted to its upper case version

flatMap

flatMap() is used to transform the tuples

It returns a stream consisting of the result of
applying the given flat-mapping function on the
tuples of the input stream

The mapping function is applied on one tuple at a time
It is a one-to-many transformation applied on the
input tuples

i.e., it can emits many new tuples for each input tuple

flatMap

The tuples emitted by the flatMap()
operation have the same number of fields of
the input tuples

Also the names of the fields are the same
But also in this case the data types of the
fields of the emitted tuples can be different
from those of the input tuples

24/05/2017

flatMap

flatMap: Example

The flatMap() method has one single INPUT STREAM OUTPUT STREAM
parameter
The parameter is an object of a class estoffiaihap Test
. | . h Fl M F . . f_- This is a sentence of
mp ementlngt e FlatMapFunction interface flatMap
The public Iterable<Values> execute(TridentTuple This
tuple) method must be implemented is
It applies a transformation on the input tuple and :
returns an iterable over the list of returned new tuples sentence
w0

flatMap: Example

flatMap: Example

package ...

import ...
Stream outputStream = topology

newStream(*spouta”, spout].flatMap(new Split(); public class Split implements FlatMapFunction {

@0Override
public Iterable<Values> execute(TridentTuple tuple) {
List<Values> valuesList = new ArrayList<>();

This flatMap operation applies the transformation specified in Split on
the tuples of the input stream and emits a new stream

for (String word : tuple.getStringByField("sentence").split(" ")) {
valuesList.add(new Values(word));
}

return valuesList;

This method splits the input string in words and returns
one new tuple for each word

tuples

tuple

