Big data: architectures and data analytics

MapReduce - Exercises
Exercise #9

- Word count problem
 - Input: (unstructured) textual file
 - Output: number of occurrences of each word appearing in the input file
- Solve the problem by using in-mapper combiners

Exercise #9 - Example

- Input file
 - Toy example file for Hadoop. Hadoop running example.

- Output pairs
 - (toy, 1)
 - (example, 2)
 - (file, 1)
 - (for, 1)
 - (hadoop, 2)
 - (running, 1)
Exercise #10

- Total count
 - Input: a collection of (structured) textual csv files containing the daily value of PM10 for a set of sensors
 - Each line of the files has the following format: sensorId, date, PM10 value (μg/m^3)
 - Output: total number of records

Exercise #10 - Example

- Input file
 - s1,2016-01-01,20.5
 - s2,2016-01-01,60.2
 - s1,2016-01-02,30.1
 - s2,2016-01-02,20.4
 - s1,2016-01-03,55.5
 - s2,2016-01-03,52.5

- Output: 6
Exercise #11

- Average
 - Input: a collection of (structured) textual csv files containing the daily value of PM10 for a set of sensors
 - Each line of the files has the following format
 sensor_id, date, PM10 value (μg/m³)
 - Output: report for each sensor the average value of PM10
 - Suppose the number of sensors is equal to 2 and their ids are s1 and s2

Exercise #11 - Example

- Input file

 s1, 2016-01-01, 20.5
 s2, 2016-01-01, 60.2
 s1, 2016-01-02, 30.1
 s2, 2016-01-02, 20.4
 s1, 2016-01-03, 55.5
 s2, 2016-01-03, 52.5

- Output

 s1, 45.4
 s2, 34.3
Exercise #12

- Select outliers
 - Input: a collection of (structured) textual files containing the daily value of PM10 for a set of sensors
 - Each line of the files has the following format:
 sensorId, date|tPM10 value (μg/m³)\n
 - Output: the records with a PM10 value below a user provided threshold (the threshold is an argument of the program)

Exercise #12 - Example

- Input file
 - s1, 2016-01-01 20.5
 - s2, 2016-01-01 60.2
 - s1, 2016-01-02 30.1
 - s2, 2016-01-02 20.4
 - s1, 2016-01-03 55.5
 - s2, 2016-01-03 52.5

- Threshold: 21
- Output
 - s1, 2016-01-01 20.5
 - s2, 2016-01-02 20.4
Exercise #13

- Top 1 most profitable date
 - Input: a (structured) textual csv files containing the daily income of a company
 - Each line of the files has the following format
 `date|daily income

 - Output:
 - Select the date and income of the top 1 most profitable date
 - In case of tie, select the first date

Exercise #13 - Example

- Input file
 - 2015-11-01 1000
 - 2015-11-02 1305
 - 2015-12-01 500
 - 2015-12-02 750
 - 2016-01-01 345
 - 2016-01-02 1145
 - 2016-02-03 200
 - 2016-02-04 500

- Output
 - 2015-11-02 1305
Exercise #13 Bis

- Top 2 most profitable dates
 - Input: a (structured) textual csv files containing the daily income of a company
 - Each line of the files has the following format
 date\tdaily income
 - Output:
 - Select the date and income of the top 2 most profitable dates
 - In case of tie, select the first 2 dates among the ones associated with the highest income

Exercise #13 Bis - Example

- Input file

<table>
<thead>
<tr>
<th>Date</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-11-01</td>
<td>1000</td>
</tr>
<tr>
<td>2015-11-02</td>
<td>1305</td>
</tr>
<tr>
<td>2015-12-01</td>
<td>500</td>
</tr>
<tr>
<td>2015-12-02</td>
<td>750</td>
</tr>
<tr>
<td>2016-01-01</td>
<td>345</td>
</tr>
<tr>
<td>2016-01-02</td>
<td>1145</td>
</tr>
<tr>
<td>2016-02-03</td>
<td>200</td>
</tr>
<tr>
<td>2016-02-04</td>
<td>500</td>
</tr>
</tbody>
</table>

- Output

<table>
<thead>
<tr>
<th>Date</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-11-02</td>
<td>1305</td>
</tr>
<tr>
<td>2016-01-02</td>
<td>1145</td>
</tr>
</tbody>
</table>
Exercise #14

- Dictionary
 - Input: a collection of news (textual files)
 - Output:
 - List of distinct words occurring in the collection

Exercise #14 - Example

- Input file
 - Toy example file for Hadoop. Hadoop running example.

- Output
 - example file for hadoop running toy
Exercise #15

- Dictionary – Mapping word - integer
 - Input: a collection of news (textual files)
 - Output:
 - List of distinct words occurring in the collection associated with a set of unique integers
 - Each word is associated with a unique integer (and vice versa)

Exercise #15 - Example

- Input file

 Toy example file for Hadoop. Hadoop running example.

- Output
 (example, 1)
 (file, 2)
 (for, 3)
 (hadoop, 4)
 (running, 5)
 (toy, 6)