Big data: architectures and data analytics

Exercise #9
- Word count problem
 - Input: (unstructured) textual file
 - Output: number of occurrences of each word appearing in the input file
 - Solve the problem by using in-mapper combiners

Exercise #9 - Example
- Input file
 - Toy example file for Hadoop, Hadoop running example.
- Output pairs
 - (toy, 1)
 - (example, 2)
 - (file, 3)
 - (for, 2)
 - (hadoop, 2)
 - (running, 1)

Exercise #10
- Total count
 - Input: a collection of (structured) textual csv files containing the daily value of PM10 for a set of sensors
 - Each line of the files has the following format
 sensorId | date | PM10 value (µg/m³)
 - Output: total number of records

Exercise #10 - Example
- Input file
 - s1,2016-03-01,20.5
 - s1,2016-03-02,60.2
 - s1,2016-03-02,30.1
 - s2,2016-03-02,20.4
 - s1,2016-03-03,55.5
 - s2,2016-03-03,52.3
- Output: 6
Exercise #11

- **Average**
 - Input: a collection of (structured) textual files containing the daily value of PM10 for a set of sensors
 - Each line of the files has the following format:
 - sensor_id, date, PM10 value (µg/m³)
 - Output: report for each sensor the average value of PM10
 - Suppose the number of sensors is equal to 2 and their ids are s1 and s2

Exercise #11 - Example

- **Input file**
 - s1, 2015-01-01, 20.5
 - s2, 2015-01-01, 50.2
 - s1, 2015-01-02, 50.1
 - s2, 2015-01-02, 20.4
 - s1, 2015-03-03, 55.5
 - s2, 2015-03-03, 52.3

- **Output**
 - s1, 45.4
 - s2, 34.3

Exercise #12

- **Select outliers**
 - Input: a collection of (structured) textual files containing the daily value of PM10 for a set of sensors
 - Each line of the files has the following format:
 - sensor_id, date, PM10 value (µg/m³)
 - Output: the records with a PM10 value below a user provided threshold (the threshold is an argument of the program)

Exercise #12 - Example

- **Input file**
 - s1, 2015-01-01, 20.5
 - s2, 2015-01-02, 60.2
 - s1, 2015-02-02, 50.1
 - s2, 2015-02-03, 55.5
 - s1, 2015-03-03, 52.3

- **Threshold: 21**
- **Output**
 - s1, 2015-02-01, 20.5
 - s2, 2015-02-02, 20.4

Exercise #13

- **Top 1 most profitable date**
 - Input: a (structured) textual files containing the daily income of a company
 - Each line of the files has the following format:
 - date, daily income
 - Output:
 - Select the date and income of the top 1 most profitable date
 - In case of tie, select the first date

Exercise #13 - Example

- **Input file**
 - 2015-11-01, 1000
 - 2015-11-02, 1305
 - 2015-12-01, 500
 - 2015-12-02, 750
 - 2016-01-01, 365
 - 2016-01-02, 1445
 - 2016-02-03, 200
 - 2016-02-04, 500

- **Output**
 - 2015-11-02, 1305
Exercise #13 Bis

- Top 2 most profitable dates
 - Input: a (structured) textual csv files containing the daily income of a company
 - Each line of the files has the following format:
      ```
      date	daily income
      ```
 - Output:
 - Select the date and income of the top 2 most profitable dates
 - In case of tie, select the first 2 dates among the ones associated with the highest income

Exercise #13 Bis - Example

- Input file
 - 2015-11-01 1000
 - 2015-11-02 1305
 - 2015-12-01 500
 - 2015-12-02 750
 - 2016-01-01 345
 - 2016-01-02 145
 - 2016-02-03 200
 - 2016-02-04 500

- Output
 - 2015-11-02 1305
 - 2015-12-02 1145

Exercise #14

- Dictionary
 - Input: a collection of news (textual files)
 - Output:
 - List of distinct words occurring in the collection

Exercise #14 - Example

- Input file
 - Toy example file for Hadoop. Hadoop running example.

- Output
 - example
 - file
 - for
 - hadoop
 - running
 - toy

Exercise #15

- Dictionary – Mapping word - integer
 - Input: a collection of news (textual files)
 - Output:
 - List of distinct words occurring in the collection associated with a set of unique integers
 - Each word is associated with a unique integer (and viceversa)

Exercise #15 - Example

- Input file
 - Toy example file for Hadoop. Hadoop running example.

- Output
 - (example, 1)
 - (file, 2)
 - (for, 3)
 - (hadoop, 4)
 - (running, 5)
 - (toy, 6)