
08/04/2018

1

08/04/2018

2

 RDDs are the primary abstraction in Spark
 RDDs are distributed collections of objects

spread across the nodes of a clusters

 They are split in partitions

 Each node of the cluster that is running an
application contains at least one partition of the
RDD(s) that is (are) defined in the application

 RDDs

 Are stored in the main memory of the executors
running in the nodes of the cluster (when it is
possible) or in the local disk of the nodes if there is
not enough main memory

 Allow executing in parallel the code invoked on
them

▪ Each executor of a worker node runs the specified code
on its partition of the RDD

08/04/2018

3

 Example of an RDD split in 3 partitions

Item 1

Item 2

Item 3

Item 4

Item 5

Item 6

Item 7

Item 8

Item 9

Item 10

Item 11

Item 12

Executor

Worker node

Item 1

Item 2

Item 3

Item 4

Executor

Worker node

Item 5

Item 6

Item 7

Item 8

Executor

Worker node

Item 9

Item 10

Item 11

Item 12

 Example of an RDD split in 3 partitions

Item 1

Item 2

Item 3

Item 4

Item 5

Item 6

Item 7

Item 8

Item 9

Item 10

Item 11

Item 12

Executor

Worker node

Item 1

Item 2

Item 3

Item 4

Executor

Worker node

Item 5

Item 6

Item 7

Item 8

Executor

Worker node

Item 9

Item 10

Item 11

Item 12

more partitions

=

more parallelism

08/04/2018

4

 RDDs
 Are immutable once constructed

▪ i.e., the content of an RDD cannot be modified

 Spark tracks lineage information to efficiently
recompute lost data (due to failures of some
executors)

▪ i.e., for each RDD, Spark knows how it as been
constructed and can rebuilt it if a failure occurs

▪ This information is represented by means of a DAG
(Direct Acyclic Graph) connecting input data and RDDs

7

 RDDs can be created
 by parallelizing existing collections of the hosting

programming language (e.g., collections and lists of
Scala, Java, Pyhton, or R)
▪ In this case the number of partition is specified by the user

 from (large) files stored in HDFS
▪ In this case there is one partition per HDFS block

 from files stored in many traditional file systems or
databases

 by transforming an existing RDDs
▪ The number of partitions depends on the type of

transformation

8

08/04/2018

5

 Spark programs are written in terms of
operations on resilient distributed data sets

 Transformations

▪ map, filter, join, …

 Actions

▪ count, collect, save, …

 Spark
 Manages scheduling and synchronization of the

jobs

 Manages the split of RDDs in partitions and
allocates RDDs’ partitions in the nodes of the
cluster

 Hides complexities of fault-tolerance and slow
machines
▪ RDDs are automatically rebuilt in case of machine

failure

08/04/2018

6

 Spark supports many programming
languages

 Scala

▪ The same language that is used to develop the Spark
framework and all its components (Spark Core, Spark
SQL, Spark Streaming, MLlib, GraphX)

 Java

 Python

 R

12

08/04/2018

7

 Spark supports many programming
languages

 Scala

▪ The same language that is used to develop the Spark
framework and all its components (Spark Core, Sparl
SQL, Spark Streaming, Mllib, GraphX)

 Java « We will use Java

 Python

 R

13

 The Driver program

 Contains the main method

 “Defines” the workflow of the application

 Accesses Spark through the SparkContext object

▪ The SparkContext object represents a connection to the
cluster

 Defines Resilient Distributed Datasets (RDDs) that
are “allocated” on the nodes of the cluster

 Invokes parallel operations on RDDs

14

08/04/2018

8

 The Driver program defines
 Local variables

▪ The standard variables of the Java programs

 RDDs
▪ Distributed “variables” stored in the nodes of the cluster

 The SparkContext object allows
▪ Creating RDDs

▪ “Submitting” executors (processes) that execute in
parallel specific operations on RDDs
▪ Transformations and Actions

15

 The worker nodes of the cluster are used to
run the application by means of the
executors

 Each executor runs on its partition of the
RDD(s) the operations that are specified in
the driver

16

08/04/2018

9

Executor

Task

Worker node

Cache

Task

Executor

Task

Worker node

Cache

Task

Executor

Task

Worker node

Cache

Task

17

Driver program

SparkContext

ȣȣ..

HDFS, Amazon S3, or other file system

Executor

Task

Worker node

Cache

Task

Executor

Task

Worker node

Cache

Task

Executor

Task

Worker node

Cache

Task

18

Driver program

SparkContext

ȣȣ..

HDFS, Amazon S3, or other file system

RDDs are distributed

across executors

08/04/2018

10

 Spark programs can also be executed locally

 Local threads are used to parallelize the execution
of the application on RDDs on a single PC

▪ Local threads can be seen are “pseudo-worker” nodes

 It is useful to develop and test the applications
before deploying them on the cluster

 A local scheduler is launched to run Spark
programs locally

19

Executor

Task

Worker node

Cache

Task

Executor

Task

Worker node

Cache

Task

Executor

Task

Worker node

Cache

Task

20

Driver program

SparkContext

ȣȣ..

Local file system

Single PC

08/04/2018

11

 Application

 User program built on Spark

 It consists of a driver program and executors on
the cluster

 Application jar

 A jar containing the user's Spark application

 Driver program

 The process running the main() function of the
application and creating the SparkContext

21
Based on http://spark.apache.org/docs/latest/cluster-overview.html

 Cluster manager
 An external service for acquiring resources on the

cluster (e.g. standalone manager, Mesos, YARN)
 Deploy mode
 Distinguishes where the driver process runs

▪ In "cluster" mode, the framework launches the driver inside of
the cluster

▪ In "client" mode, the submitter launches the driver outside of
the cluster.

 Worker node
 Any node of the cluster that can run application code

in the cluster

22

08/04/2018

12

 Executor
 A process launched for an application on a worker

node, that runs tasks and keeps data in memory or
disk storage across them

 Eacch application has its own executors
 Task
 A unit of work that will be sent to one executor

 Job
 A parallel computation consisting of multiple tasks

that gets spawned in response to a Spark action (e.g.
save, collect)

23

 Stage

 Each job gets divided into smaller sets of tasks called
stages that depend on each other (similar to the map
and reduce stages in MapReduce)

24

08/04/2018

13

 Count the number of lines of the input file

 The name of the file is specified by using a
command line parameter (i.e., args[0])

 Print the results on the standard output

26

08/04/2018

14

package it.polito.bigdata.spark.linecount;

import org.apache.spark.api.java.*;
import org.apache.spark.SparkConf;

public class DriverSparkBigData {
 public static void main(String[] args) {

 String inputFile;
 long numLines;

 inputFile=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf=new SparkConf().setAppName("Spark Line Count");

 // Create a Spark Context object
 JavaSparkContext sc = new JavaSparkContext(conf);

27

 // Build an RDD of Strings from the input textual file
 // Each element of the RDD is a line of the input file
 JavaRDD<String> lines=sc.textFile(inputFile);

 // Count the number of lines in the input file
 // Store the returned value in the local variable numLines
 numLines=lines.count();

 // Print the output in the standard output (stdout)
 System.out.println("Number of lines="+numLines);

 // Close the Spark Context object
 sc.close();
 }
}

28

08/04/2018

15

package it.polito.bigdata.spark.linecount;

import org.apache.spark.api.java.*;
import org.apache.spark.SparkConf;

public class DriverSparkBigData {
 public static void main(String[] args) {

 String inputFile;
 long numLines;

 inputFile=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf=new SparkConf().setAppName("Spark Line Count");

 // Create a Spark Context object
 JavaSparkContext sc = new JavaSparkContext(conf);

29

Local Java variables.
They are allocated in the main memory
of the same process of the object instancing
the Driver Class

 // Build an RDD of Strings from the input textual file
 // Each element of the RDD is a line of the input file
 JavaRDD<String> lines=sc.textFile(inputFile);

 // Count the number of lines in the input file
 // Store the returned value in the local variable numLines
 numLines=lines.count();

 // Print the output in the standard output (stdout)
 System.out.println("Number of lines="+numLines);

 // Close the Spark Context object
 sc.close();
 }
}

30

Local Java variables.
They are allocated in the main memory
of the same process of the object instancing
the Driver Class

RDD.
It is allocated/stored in the main memory
or in the local disk of the executors of the
worker nodes

08/04/2018

16

 Local variables

 Can be used to store only “small” objects/data

▪ The maximum size is equal to the main memory of the
process associated with the Driver

 RDDs

 Are used to store “big/large” collections of
objects/data in the nodes of the cluster

▪ In the main memory of the nodes, when it is possible

▪ In the local disks of the worker nodes, when it is
necessary

31

 Word Count implemented by means of Spark

 The name of the input file is specified by using a
command line parameter (i.e., args[0])

 The output of the application (i.e., the pairs (word,
num. of occurrences) is stored in and output
folder (i.e., args[1])

 Note: Do not worry about the details

32

08/04/2018

17

package it.polito.bigdata.spark.wordcount;

import java.util.Arrays;
import org.apache.spark.api.java.*;
import org.apache.spark.SparkConf;
import scala.Tuple2;

public class SparkWordCount {
 @SuppressWarnings("serial")
 public static void main(String[] args) {

 String inputFile=args[0];
 String outputPath=args[1];

 // Create a configuration object and set the name of the application
 SparkConf conf=new SparkConf().setAppName("Spark Word Count");

 // Create a Spark Context object
 JavaSparkContext sc = new JavaSparkContext(conf);

33

 // Build an RDD of Strings from the input textual file
 // Each element of the RDD is a line of the input file
 JavaRDD<String> lines=sc.textFile(inputFile);

 // Split/transform the content of lines in a
 // list of words an store in the words RDD
 JavaRDD<String> words =
 lines.flatMap(line -> Arrays.asList(line.split("\\s+")).iterator());

 // Map/transform each word in the words RDD
 // to a pair (word,1) an store the result in the words_one RDD
 JavaPairRDD<String, Integer> words_one = words.mapToPair(word ->
 new Tuple2<String, Integer>(word.toLowerCase(), 1));

34

08/04/2018

18

 // Count the num. of occurrences of each word.
 // Reduce by key the pairs of the words_one RDD and store
 // the result (the list of pairs (word, num. of occurrences)
 // in the counts RDD
 JavaPairRDD<String, Integer> counts =
 words_one.reduceByKey((c1, c2) -> c1 + c2);

 // Store the result in the output folder
 counts.saveAsTextFile(outputPath);

 // Close the Spark Context object
 sc.close();
 }
}

35

package it.polito.bigdata.spark.wordcount;

import java.util.Arrays;
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.*;
import org.apache.spark.SparkConf;
import scala.Tuple2;

public class SparkWordCount {
 @SuppressWarnings("serial")
 public static void main(String[] args) {

 String inputFile=args[0];
 String outputPath=args[1;]

 // Create a configuration object and set the name of the application
 SparkConf conf=new SparkConf().setAppName("Spark Word Count");

 // Create a Spark Context object
 JavaSparkContext sc = new JavaSparkContext(conf);

36

08/04/2018

19

 // Build an RDD of Strings from the input textual file
 // Each element of the RDD is a line of the input file
 JavaRDD<String> lines=sc.textFile(inputFile);

 // Split/transform the content of lines in a
 // list of words an store in the words RDD
 JavaRDD<String> words = lines.flatMap(
 new FlatMapFunction<String, String>() {
 @Override
 public Iterable<String> call(String s) {
 return Arrays.asList(s.split("\\s+"));
 }
 });

37

 // Map/transform each word in the words RDD
 // to a pair (word,1) an store the result in the words_one RDD
 JavaPairRDD<String, Integer> words_one =
 words.mapToPair(
 new PairFunction<String, String, Integer>() {
 @Override
 public Tuple2<String, Integer> call(String word) {
 return new Tuple2<String, Integer>(word.toLowerCase(), 1);
 }
 });

38

08/04/2018

20

 // Count the num. of occurrences of each word.
 // Reduce by key the pairs of the words_one RDD and store
 // the result (the list of pairs (word, num. of occurrences)
 // in the counts RDD
 JavaPairRDD<String, Integer> counts =
 words_one.reduceByKey(
 new Function2<Integer, Integer, Integer {
 @ Override
 public Integer call(Integer c1, Integer c2) {
 return c1 + c2;
 }
 });

39

 // Store the result in the output folder
 counts.saveAsTextFile(outputPath);

 // Close the Spark Context object
 sc.close();
 }
}

40

