Big data: architectures and
data analytics

Input file

A1008ULQSWI006,Boo170AQ1Y

A100EBHBG1GF5,B0013T5Y0 4

A1017Y0SGBINVS,BooogF3SAK

A101F8M8DPFOMg, BoosH Y2BRO,BoooH7 MFVI

A102H88HCCJJAB,Booo7A BXVE

A102ME7M2YW2P5,B000F KGT8W

A102QP205XRVH,Bo01EQ55GU,BoooE HORTS

A102TGNH1D915Z, Boo oRHXKC6, Booo2 DHNXC, Booo2 DHNXC,BoooXJK7UG, Boooo8D FK5,Booo
SP1CWW,BooogYD7P 2,B000SP1CWW,B00008DFKs, BooogYD7P2

A1051WAJLoHJWH,BoooWs UsH6

A1052V04GOA7RV,B002GJg)Y6,B001E5E3) Y,B008ZRKZS M,B002GJgIWS

Each line contains
areviewer ID (AXXXXXX) and
thelist of products reviewed by her/him (BXXXXXX)

Lab 3 — Ex.1: Possible solutions

Lab3-Ex.1

Your goal is to find the top 100 pairs of
products most often reviewed (and so
bought) together

We consider two products as reviewed (i.e.,
bought) together if they appear in the same
line of the input file

20/04/2018

Lab 3 — Ex.1: Solution #a

At least three different “approaches” can be
usedto solve Ex. 10of Lab 3

A chain of two MapReduce jobs is used
The first job computes the number of
occurrences of each pair of products that occur
together in at least one line of the input file

Itis like a word count where each “word” is a pair of
products
The second job, selects the top-k pairs of
products, in terms of num. of occurrences,
among the pairs emitted by the first job
Itimplements the top-k pattern

Lab 3 — Ex.1: Solution #1

20/04/2018

Lab 3 — Ex.1: Solution #1

The first job computes the number of
occurrences of each pair of products
analyzing the input file

(“product_x,product_y", 1)
(“product_y, product_z", 1)

Mapper #1
("“product_x,product_y", num. Occurrences_xy)
Reducer#1 | ("product_x,product_z’, num. Occurrences_xz)
(“product_y,product_z", num. Occurrences_yz)
Reducer #M | ("product_z,product_w”, num. Occurrences_zw)
Mapper #N

(*product_z,product_w”, 2)
(*product_y,product_z", 1)

Lab 3 — Ex.1: Solution #2

The second job computes the global top-k
pairs of products in terms of num. of
occurrences

Local top-k list Mapper #1
("product_xproduct_y”, num. Occurrences_xy)

Mapper #1
Global top-k list
Reducer #1 | ("Product_x,product_y”, num. Occurrences_xy)
(*product_y,product_z*, num. Occurrences_yz)
Mapper #J

Local top-klist Mapper #)
("product_y,product_z", num. Occurrences_yz)

Lab 3 — Ex.1: Solution #2

Onessingle MapReduce jobs is used
The job

Computes the number of occurrences of each pair of
products that occur togetherin atleast one line of the
input file
Itis again like a word count where each “word” is a pair of
products
However, the reducer does not emit all the pairs (pair of
products, #of occurrences) that it computes
The top-klist is computed in the reducer and is emitted in its
cleanup method

Lab 3 — Ex.1: Solution #2

Inthe reducer, the job computes the top-k list
Byinitializing the top-k listin the setup method of the reducer

By updating the top-klist in the reduce method (immediately
after the computation of the frequency of the current pair of

products)
By emitting the final top-k list in the cleanup method of the
reducer

There must be in order to compute

thefinal global top-k list

Lab 3 — Ex.1: Solution #3

There is one single job that computes the
number of occurrences and the global top-k
list at the same time in its single reducer

(“product_xproduct_y”, 1)
(“product_y,product_2", 1)
Mapper #1

Global top-k ist
Reducer#1 | (“product_xproduct_y”, num. Occurrences_xy)
(“product_y,product_z*, num. Occurrences_yz)

Mapper #N (“product_z,product_w", 1)
(“product_y,product_z", 1)

A chain of two MapReduce jobs is used

The first job is the same job used by Solution #2
However, in this case the number of reducersis set to
avalue greaterthan one

Thissetting allows parallelizing this intermediate step
Eachreducer emitsalocal top-k list

Thefirst job returnsa number of local top-k lists equal to the
number of reducers of the firstjob

Lab 3 — Ex.1: Solution #3

20/04/2018

Lab 3 — Ex.1: Solution #3

The second job computes the final top-k list
merging the pairs of the local top-k lists emitted
by the first job

Itis based on the standard Top-k pattern

Lab 3 — Ex.1: Solution #3

The first job computes the number of
occurrences of each pair of products but each
reducer emits only its local top-k pairs

(“product_x,product_y", 1)
(“product_y,product_z",1)

Mapper #1 3
Local top-klist Reducer #1
Reducer#1 | ("product_x,product_y”, num. Occurrences_xy)
Local top-klist Reducer #M
Reducer #M | (“product_y,product_z, num. Occurrences_yz)
Mapper #N

("product_z,product_w", 1)
(“product_y,product_z", 1)

Lab 3 — Ex.1: Comparison of the

The second job computes the global top-k
pairs of products in terms of num. of
occurrences merging the local list of job #1

Mapper #1
Global top-klist
Reducer#2 | ("Product_xproduct_y”, num. Occurrences_xy)
(“product_y,product_z", num. Occurrences_yz)
Mapper #J

Lab 3 — Ex.1: Comparison of the

proposed solutions

Solution #1
Adopts two standard patterns

- However, the output of the first job is very large

One pairfor each pair of products occurring together at least one
timein the input file

Lab 3 — Ex.1: Comparison of the

proposed solutions

Solution #2

Only one job is instantiated and executed (there
is only one job in Solution #2) and its output is
already the final top-k list

- However, only one reducer is instantiated

It could become a bottleneck because one single reducer must
analyzethe potentially large set of pairs emitted by the mappers

- Itis not a standard pattern

proposed solutions

Solution #3

Each reducer of the first job emits only the pair
contained in its local top-k lists

Onetop-klist for each reducer

The pairs of the top-k lists emitted by the reducers are

significantly smallerthan all the pairs of products

occurring together atleast one time

Since the first job instantiates many reducers, the

parallelism is maintained

- Itis not a standard pattern

