Big data: architectures and data analytics

Spark MLlib
Spark MLlib

- Spark MLlib is the Spark component providing the machine learning/data mining algorithms
 - Pre-processing techniques
 - Classification (supervised learning)
 - Clustering (unsupervised learning)
 - Itemset mining

Spark MLlib

- MLlib APIs are divided into two packages:
 - org.apache.spark.mllib
 - It contains the original APIs built on top of RDDs
 - This version of the APIs is in maintenance mode and will be probably deprecated in the next releases of Spark
 - org.apache.spark.ml
 - It provides higher-level API built on top of DataFrames (i.e, Dataset<Row>) for constructing ML pipelines
 - It is recommended because the DataFrame-based API is more versatile and flexible
 - It provides the pipeline concept
Spark MLlib – Data types

- Spark MLlib is based on a set of basic local and distributed data types
 - Local vector
 - Labeled point
 - Local matrix
 - Distributed matrix
 - ..
- DataFrames for ML contain objects based on those basic data types
Local vectors

- Local `org.apache.spark.ml.linalg.Vector` objects in MLlib are used to store vectors of double values
 - Dense and sparse vectors are supported
- The MLlib algorithms work on vectors of doubles
 - Vectors of doubles are used to represent the input records/data
 - One vector for each input record
 - Non double attributes/values must be mapped to double values

Dense and sparse representations are supported

E.g., a vector (1.0, 0.0, 3.0) can be represented
- in dense format as [1.0, 0.0, 3.0]
- or in sparse format as (3, [0, 2], [1.0, 3.0])
 - where 3 is the size of the vector
 - The array [0, 2] contains the indexes of the non-zero cells
 - The array [1.0, 3.0] contains the values of the non-zero cells
The following code shows how a vector can be created in Spark

```java
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;

// Create a dense vector (1.0, 0.0, 3.0).
Vector dv = Vectors.dense(1.0, 0.0, 3.0);

// Create a sparse vector (1.0, 0.0, 3.0) by
// specifying its indices and values corresponding
// to non-zero entries
Vector sv = Vectors.sparse(3, new int[]{0, 2},
                          new double[]{1.0, 3.0});
```

Size of the vector

Indexes of non-empty cells

Values of non-empty cells
Labeled points

- Local `org.apache.spark.ml.feature.LabeledPoint` objects are local vectors of doubles associated with a label
- The label is a double value
 - For the classification problem, each class label is associated with an integer value (casted to a double) ranging from 0 to \(C-1 \), where \(C \) is the number of distinct classes
 - For the regression problem, the label is the real value to predict
- Both dense and sparse vectors associated with a label are supported

Labeled points

- LabeledPoint objects are created by invoking the `LabeledPoint` constructor
 - Note that label is a double and also Vector is a vector of doubles
- Given a LabeledPoint
 - The `double label()` method returns the value of its label
 - The `org.apache.spark.ml.linalg.Vector features()` method returns the vector containing the values of its attributes/features
Labeled points

- In MLlib, labeled points are used by supervised (classification and regression) machine learning algorithms to represent records/data points
 - The label part represents the target of the analysis
 - The features part represents the predictive attributes/features that are used to predict the target attribute, i.e., the value of label

Labeled points: classification example

- Suppose the analyzed records/data points are characterized by
 - 3 real (predictive) attributes/features
 - A class label attribute that can assume two values: 0 or 1
 - This is a binomial classification problem
 - We want to predict the value of the class label attribute based on the values of the other attributes/features
Labeled points: classification example

- Consider the following two records/data points
 - Attributes/features = \[1.0, 0.0, 3.0\] -- Label = 1
 - Attributes/features = \[2.0, 5.0, 3.0\] -- Label = 0
- Two LabeledPoint objects to represent those two data points in Spark

```java
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.feature.LabeledPoint;

// Create a LabeledPoint for the first record/data point
LabeledPoint record1 =
    new LabeledPoint(1, Vectors.dense(1.0, 0.0, 3.0));

// Create a LabeledPoint for the second record/data point
LabeledPoint record2 =
    new LabeledPoint(0, Vectors.dense(2.0, 5.0, 3.0));
```
Labeled points: classification example

```java
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.feature.LabeledPoint;

// Create a LabeledPoint for the first record/data point
LabeledPoint record1 = new LabeledPoint(1, Vectors.dense(1.0, 0.0, 3.0));

// Create a LabeledPoint for the second record/data point
LabeledPoint record2 = new LabeledPoint(0, Vectors.dense(2.0, 5.0, 3.0));
```

Value of the class label

Vector of doubles representing the values of the predictive features/attributes
Labeled points and sparse vectors: classification example

- Consider again the following two records/data points
 - Attributes/features = [1.0,0.0,3.0] -- Label = 1
 - Attributes/features = [2.0,5.0,3.0] -- Label = 0
- Now we will use sparse vectors instead of dense ones to represent those two data points in Spark

```java
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.feature.LabeledPoint;

// Create a LabeledPoint for the first record/data point
LabeledPoint record1= new LabeledPoint(1,
  Vectors.sparse(3, new int[] {0, 2}, new double[]{1.0, 3.0}) );

// Create a LabeledPoint for the second record/data point
LabeledPoint record2= new LabeledPoint(0,
  Vectors.sparse(3, new int[] {0, 1, 2}, new double[]{2.0, 5.0, 3.0}));
```
Spark MLlib - Main concepts

- Spark MLlib uses DataFrames (alias of Dataset<Row>) as input data
- Hence, the input of the MLlib algorithms are structured data (i.e., tables)
- All input data must be represented by means of “tables” before applying the MLlib algorithms
 - Also the document collections must be transformed in a tabular format
The DataFrames used by the MLlib algorithms are characterized by several columns associated with different characteristics of the input data:

- **label**
 - Target of a classification/regression analysis
- **features**
 - A vector containing the values of the attributes/features of the input record/data points
- **text**
 - The original text of a document before being transformed in a tabular format

A Transformer is a ML algorithm/procedure that transforms one Dataset<Row> into another Dataset<Row>:

- E.g., A feature transformer might take a Dataset<Row>, read a column (e.g., text), map it into a new column (e.g., feature vectors), and output a new Dataset<Row> with the mapped column appended
- E.g., a classification model is a Transformer that can be applied on a Dataset<Row> with features and transforms it into a Dataset<Row> with also the prediction column
Spark MLlib - Main concepts

- **Estimator**
 - An Estimator is a ML algorithm/procedure that is applied on a Dataset<Row> to produce a Transformer (a model)
 - Each Estimator implements a method fit(), which accepts a Dataset<Row> and produces a Model of type Transformer
 - An Estimator abstracts the concept of a learning algorithm or any algorithm that fits or trains on an input dataset and returns a model
 - E.g., The Logistic Regression classification algorithm is an Estimator, and calling fit() on it a Logistic Regression Model is built, which is a Model and hence a Transformer

Spark MLlib - Main concepts

- **Pipeline**
 - A Pipeline chains multiple Transformers and Estimators together to specify a Machine learning/Data Mining workflow
 - The output of a transformer/estimator is the input of the next one in the pipeline
 - E.g., a simple text document processing workflow aiming at building a classification model includes several steps
 - Split each document into a set of words
 - Convert each set of words into a numerical feature vector
 - Learn a prediction model using the feature vectors and the associated class labels
Parameter
- All Transformers and Estimators share common APIs for specifying parameters

In the new APIs of Spark MLlib the use of the pipeline approach is preferred/recommended

This approach is based on the following steps
1. The set of Transformers and Estimators that are needed are instantiated
2. A pipeline object is created and the sequence of transformers and estimators associated with the pipeline are specified
3. The pipeline is executed and a model is created
4. (optional) The model is applied on new data
Spark MLlib provides a (limited) set of classification algorithms

- Logistic regression
- Decision trees
- SVMs (with linear kernel)
 - Only binary classification problem are supported by the implemented SVMs
- Naïve Bayes
- ...
Classification algorithms

- All the available classification algorithms are based on two phases
 - **Model generation** based on a set of training data
 - **Prediction** of the class label of new unlabeled data
- All the classification algorithms available in Spark work **only** on numerical attributes
 - Categorical values must be mapped to integer values (i.e., numerical values) before applying the MLlib classification algorithms

Classification algorithms

- All the Spark classification algorithms are built on top of an input Dataset<Row> containing (at least) two columns
 - **label**
 - The class label, i.e., the attribute to be predicted by the classification model
 - It is an integer value (casted to a double)
 - **features**
 - A vector of doubles containing the values of the predictive attributes of the input records/data points
 - The data type of this column is org.apache.spark.ml.linalg.Vector
Consider the following classification problem

- We want to predict if new customers are good customers or not based on their monthly income and number of children
- Predictive attributes
 - Monthly income
 - Number of children
- Class Label (target attribute)
 - Customer type: Good customer/Bad customer
 - We map “Good customer” to 1 and “Bad customer” to 0

Example of input training data

- i.e., the set of customers for which the value of the class label is known
- They are used by the classification algorithm to infer a classification model

<table>
<thead>
<tr>
<th>CustomerType</th>
<th>MonthlyIncome</th>
<th>NumChildren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good customer</td>
<td>1400.0</td>
<td>2</td>
</tr>
<tr>
<td>Bad customer</td>
<td>11105.5</td>
<td>0</td>
</tr>
<tr>
<td>Good customer</td>
<td>2150.0</td>
<td>2</td>
</tr>
</tbody>
</table>
Classification algorithms: Example of expected input Dataset<Row>

- Input training data

<table>
<thead>
<tr>
<th>CustomerType</th>
<th>MonthlyIncome</th>
<th>NumChildren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good customer</td>
<td>1400.0</td>
<td>2</td>
</tr>
<tr>
<td>Bad customer</td>
<td>11105.5</td>
<td>0</td>
</tr>
<tr>
<td>Good customer</td>
<td>2150.0</td>
<td>2</td>
</tr>
</tbody>
</table>

- Input Dataset<Row> that must be generated as input for the MLlib classification algorithms

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>[1400.0 , 2.0]</td>
</tr>
<tr>
<td>0.0</td>
<td>[11105.5, 0.0]</td>
</tr>
<tr>
<td>1.0</td>
<td>[2150.0 , 2.0]</td>
</tr>
</tbody>
</table>

The categorical values of CustomerType (the class label column) must be mapped to integer values (finally casted to doubles)

- Input training data

<table>
<thead>
<tr>
<th>CustomerType</th>
<th>MonthlyIncome</th>
<th>NumChildren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good customer</td>
<td>1400.0</td>
<td>2</td>
</tr>
<tr>
<td>Bad customer</td>
<td>11105.5</td>
<td>0</td>
</tr>
<tr>
<td>Good customer</td>
<td>2150.0</td>
<td>2</td>
</tr>
</tbody>
</table>

- Input Dataset<Row> that must be generated as input for the MLlib classification algorithms

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>[1400.0 , 2.0]</td>
</tr>
<tr>
<td>0.0</td>
<td>[11105.5, 0.0]</td>
</tr>
<tr>
<td>1.0</td>
<td>[2150.0 , 2.0]</td>
</tr>
</tbody>
</table>
Classification algorithms: Example of expected input Dataset<Row>

- Input:
The values of the predictive attributes are “stored” in vectors of doubles. One single vector for each input record.

<table>
<thead>
<tr>
<th>CustomerType</th>
<th>MonthlyIncome</th>
<th>NumChildren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good customer</td>
<td>1400.0</td>
<td>2</td>
</tr>
<tr>
<td>Bad customer</td>
<td>11105.5</td>
<td>0</td>
</tr>
<tr>
<td>Good customer</td>
<td>2150.0</td>
<td>2</td>
</tr>
</tbody>
</table>

- Input Dataset<Row> that must be generated as input for the MLlib classification algorithms

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>[1400.0 , 2.0]</td>
</tr>
<tr>
<td>0.0</td>
<td>[11105.5, 0.0]</td>
</tr>
<tr>
<td>1.0</td>
<td>[2150.0 , 2.0]</td>
</tr>
</tbody>
</table>

Classification algorithms: Example of expected input Dataset<Row>

- Input:
In the generated Dataset<Row> the names of the predictive attributes are not preserved.

<table>
<thead>
<tr>
<th>CustomerType</th>
<th>MonthlyIncome</th>
<th>NumChildren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good customer</td>
<td>1400.0</td>
<td>2</td>
</tr>
<tr>
<td>Bad customer</td>
<td>11105.5</td>
<td>0</td>
</tr>
<tr>
<td>Good customer</td>
<td>2150.0</td>
<td>2</td>
</tr>
</tbody>
</table>

- Input Dataset<Row> that must be generated as input for the MLlib classification algorithms

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>[1400.0 , 2.0]</td>
</tr>
<tr>
<td>0.0</td>
<td>[11105.5, 0.0]</td>
</tr>
<tr>
<td>1.0</td>
<td>[2150.0 , 2.0]</td>
</tr>
</tbody>
</table>
Logistic regression and structured data

The following slides show how to

- Create a classification model based on the **logistic regression algorithm**
 - The model is inferred by analyzing the training data, i.e., the example records/data points for which the value of the class label is known
- Apply the model to new unlabeled data
 - The inferred model is applied to predict the value of the class label of new unlabeled records/data points
In the following example, the input training data is stored in a text file that contains
- One record/data point per line
- The records/data points are structured data with a fixed number of attributes (four)
 - One attribute is the class label
 - We suppose that the first column of each record contains the class label
 - The other three attributes are the predictive attributes that are used to predict the value of the class label
- The input file has not the header line

Consider the following example input training data file
1.0,0.0,1.1,0.1
0.0,2.0,1.0,-1.0
0.0,2.0,1.3,1.0
1.0,0.0,1.2,-0.5
- It contains four records/data points
- This is a binary classification problem because the class label assumes only two values
 - 0 and 1
The first operation consists of transforming the content of the input training file into a Dataset<Row> containing two columns:
- label
- features
In the following solution, we will first define an RDDs of LabeledPoint objects and then we will “transform” it into a Dataset<Row>
However, other approaches can be used to achieve the same result.

Input training file:
- 1.0,0.0,1.1,0.1
- 0.0,2.0,1.0,-1.0
- 0.0,2.0,1.3,1.0
- 1.0,0.0,1.2,-0.5

Input training Dataset<Row> to be generated:

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>[0.0,1.1,0.1]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0,1.0,-1.0]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0,1.3,1.0]</td>
</tr>
<tr>
<td>1.0</td>
<td>[0.0,1.2,-0.5]</td>
</tr>
</tbody>
</table>

Logistic regression and structured data: training data

- Input training file

1.0,0.0,1.1,0.1
0.0,2.0,1.0,-1.0
0.0,2.0,1.3,1.0
1.0,0.0,1.2,-0.5

- Input training Dataset<Row> to be generated

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>[0.0,1.1,0.1]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0,1.0,-1.0]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0,1.3,1.0]</td>
</tr>
<tr>
<td>1.0</td>
<td>[0.0,1.2,-0.5]</td>
</tr>
</tbody>
</table>

Name of this column: label
Data type: double

Logistic regression and structured data: training data

- Input training file

1.0,0.0,1.1,0.1
0.0,2.0,1.0,-1.0
0.0,2.0,1.3,1.0
1.0,0.0,1.2,-0.5

- Input training Dataset<Row> to be generated

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>[0.0,1.1,0.1]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0,1.0,-1.0]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0,1.3,1.0]</td>
</tr>
<tr>
<td>1.0</td>
<td>[0.0,1.2,-0.5]</td>
</tr>
</tbody>
</table>

Name of this column: feature
Data type: org.apache.spark.ml.linalg.Vector
The file containing the unlabeled data has the same format of the training data file
- However, the first column is empty because the class label is unknown
- We want to predict the class label value of each unlabeled data by applying the classification model that has been inferred on the training data
- The predicted class label value is stored in a new column, called “prediction” of the returned Dataset<Row>

Consider the following example input unlabeled data file:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1.5</th>
<th>1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0</td>
<td>2.0</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>2.2</td>
<td>-1.5</td>
</tr>
</tbody>
</table>

It contains three unlabeled records/data points
- Note that the first column is empty (the content before the first comma is the empty string)
Logistic regression and structured data: unlabeled data

- Also the unlabeled data must be stored into a Dataset<Row> containing two columns
 - label
 - features
- A label value is required also for unlabeled data
 - Any numerical value can be used
 - The specified value does not impact on the prediction because the label column is not used to perform the prediction
 - Usually the value -1.0 is used

Logistic regression and structured data: unlabeled data

- Input unlabeled data file
 - -1.0,1.5,1.3
 - 3.0,2.0,-0.1
 - 0.0,2.2,-1.5
- Input unlabeled data Dataset<Row> to be generated

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>[-1.0,1.5,1.3]</td>
</tr>
<tr>
<td>-1.0</td>
<td>[3.0,2.0,-0.1]</td>
</tr>
<tr>
<td>-1.0</td>
<td>[0.0,2.2,-1.5]</td>
</tr>
</tbody>
</table>
Logistic regression and structured data: unlabeled data

- Input unlabeled data file

```
,-1.0,1.5,1.3
-1.0,3.0,2.0,-0.1
-1.0,0.0,2.2,-1.5
```

A value must be specified also for the label column. I arbitrarily set it to -1.0 for all records.

Row > to be generated

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>[-1.0, 1.5, 1.3]</td>
</tr>
<tr>
<td>-1.0</td>
<td>[3.0, 2.0, -0.1]</td>
</tr>
<tr>
<td>-1.0</td>
<td>[0.0, 2.2, -1.5]</td>
</tr>
</tbody>
</table>

Logistic regression and structured data: prediction column

- After the application of the classification model on the unlabeled data, Spark returns a new Dataset<Row> containing
 - The same columns of the input data
 - A new column called prediction
 - For each input unlabeled record, it contains the predicted class label value
 - Also other two columns, associated with the probabilities of the predictions, are returned
 - We do not consider them in the following example
Logistic regression and structured data: prediction column

- Input unlabeled data Dataset<Row>

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>[-1.0, 1.5, 1.3]</td>
</tr>
<tr>
<td>-1.0</td>
<td>[3.0, 2.0, -0.1]</td>
</tr>
<tr>
<td>-1.0</td>
<td>[0.0, 2.2, -1.5]</td>
</tr>
</tbody>
</table>

- Returned Dataset<Row> with the predicted class label values

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
<th>prediction</th>
<th>rawPrediction</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>[-1.0, 1.5, 1.3]</td>
<td>1.0</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>-1.0</td>
<td>[3.0, 2.0, -0.1]</td>
<td>0.0</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>-1.0</td>
<td>[0.0, 2.2, -1.5]</td>
<td>1.0</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.*;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.feature.LabeledPoint;

public class SparkDriver {
 public static void main(String[] args) {
 String inputFileTraining;
 String inputFileTest;
 String outputPath;
 inputFileTraining = args[0];
 inputFileTest = args[1];
 outputPath = args[2];

 // Create a Spark Session object and set the name of the application
 // We use some Spark SQL transformation in this program
 SparkSession ss = SparkSession.builder().appName("MLlib - logistic regression").getOrCreate();

 // Create a Java Spark Context from the Spark Session
 // When a Spark Session has already been defined this method
 // is used to create the Java Spark Context
 JavaSparkContext sc = new JavaSparkContext(ss.sparkContext());
// *************************
// Training step
// *************************

// Read training data from a text file
// Each line has the format: class-label, list of three numerical
// attribute values.
// E.g.,
// 1.0,5.8,0.51.7
JavaRDD<String> trainingData = sc.textFile(inputFileTraining);

// Map each input record/data point of the input file to a LabeledPoint
JavaRDD<LabeledPoint> trainingRDD = trainingData.map(record ->
{
 String[] fields = record.split(";");
 // Fields of 0 contains the id of the class
 double classLabel = Double.parseDouble(fields[0]);

 //The other three cells of fields contain the (numerical)
 // values of the three predictive attributes
 //Create an array of doubles containing those values
 double[] attributesValues = new double[3];

 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);

 // LabeledPoint
 new LabeledPoint(classLabel, attributesValues),
});
Logistic regression and structured data: Example

// Create a dense vector based on the content of
// attributesValues
Vector attrValues = Vectors.dense(attributesValues);

// Return a LabeledPoint based on the content of
// the current line
return new LabeledPoint(classLabel, attrValues);

// Prepare training data.
// We use LabeledPoint, which is a JavaBean.
// We use Spark SQL to convert RDDs of JavaBeans
// into Dataset<Row>. The columns of the Dataset are label
// and features
Dataset<Row> training =
 ss.createDataFrame(trainingRDD, LabeledPoint.class).cache();
Logistic regression and structured data: Example

// Prepare training data.
// We use LabeledPoint, which is a JavaBean.
// We use Spark SQL to convert RDDs of JavaBeans
// into Dataset<Row>. The columns of the Dataset are label
// and features
Dataset<Row> training =
 ss.createDataFrame(trainingRDD, LabeledPoint.class).cache();

The training data are represented by means of a Dataset<Row> of LabeledPoint.
Each element of this DataFrame has two columns:
- label: the class label
- features: the vector of real values associated with the attributes of the input record

This Dataset is cached because the logistic regression algorithm iterates and applies multiple actions on it.

Logistic regression and structured data: Example

// Create a LogisticRegression object.
// LogisticRegression is an Estimator that is used to
// create a classification model based on logistic regression.
LogisticRegression lr = new LogisticRegression();

// We can set the values of the parameters of the
// Logistic Regression algorithm using the setter methods.
// There is one set method for each parameter
// For example, we are setting the number of maximum iterations to 10
// and the regularization parameter. to 0.0.1
lr.setMaxIter(10);
lr.setRegParam(0.01);

// Define the pipeline that is used to create the logistic regression
// model on the training data
// In this case the pipeline contains one single stage/step (the model
// generation step).
Pipeline pipeline = new Pipeline().setStages(new PipelineStage[]{lr});
Logistic regression and structured data: Example

// Create a LogisticRegression object.
LogisticRegression lr = new LogisticRegression();

// We can set the values of the parameters of the
// Logistic Regression algorithm using the setter methods.
// There is one set method for each parameter
// For example, we are setting the number of maximum iterations to 10
// and the regularization parameter to 0.01
lr.setMaxIter(10);
lr.setRegParam(0.01);

// Define the pipeline that is used to create the logistic regression
// model on the training data
// In this case the pipeline contains one single stage (the model
// generation step).
// This is the sequence of Transformers and Estimators to apply on the training data.
// This simple pipeline contains only the logistic regression estimator
Pipeline pipeline = new Pipeline().setStages(new PipelineStage[]{lr});

// Execute the pipeline on the training data to build the
// classification model
PipelineModel model = pipeline.fit(training);

// Now, the classification model can be used to predict the class label
// of new unlabeled data
Logistic regression and structured data: Example

// Execute the pipeline on the training data to build the classification model
PipelineModel model = pipeline.fit(training);

// Now, the classification model can be used to predict the class label of new unlabeled data

// Prediction step

// Read unlabeled data
// For the unlabeled data only the predictive attributes are available
// The class label is not available and must be predicted by applying the classification model inferred during the previous phase
JavaRDD<String> unlabeledData = sc.textFile(inputFileTest);
// Map each unlabeled input record/data point of the input file to a LabeledPoint
JavaRDD<LabeledPoint> unlabeledRDD = unlabeledData.map(record -> {
 String[] fields = record.split(",");

 // The last three cells of fields contain the (numerical) values of the three predictive attributes
 // Create an array of doubles containing those three values
 double[] attributesValues = new double[3];
 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);

 // Create a dense vector based in the content of attributesValues
 Vector attrValues = Vectors.dense(attributesValues);

 // The class label is unknown. To create a LabeledPoint a class label value must be specified also for the unlabeled data. I set it to -1 (an invalid value).
 // The specified value does not impact on the prediction because the label column is not used to perform the prediction
 double classLabel = -1;

 // Return a new LabeledPoint
 return new LabeledPoint(classLabel, attrValues);
});

// Create the DataFrame based on the new test data
Dataset<Row> test = ss.createDataFrame(unlabeledRDD, LabeledPoint.class);
Logistic regression and structured data: Example

// Make predictions on test documents using the transform() method.
// The transform will only use the 'features' columns
Dataset<Row> predictions = model.transform(test);

// The returned Dataset<Row> has the following schema (attributes)
// - features: vector (values of the attributes)
// - label: double (value of the class label)
// - rawPrediction: vector (nullable = true)
// - probability: vector (The i-th cell contains the probability that the current record belongs to the i-th class)
// - prediction: double (the predicted class label)

// Select only the features (i.e., the value of the attributes) and the predicted class for each record
Dataset<Row> predictionsDF = predictions.select("features", "prediction");

The model is applied to new data/records and the class label is predicted for each new data/record.
The new generated Dataset<Row> has the same attributes of the input Dataset<Row> and the prediction attribute (and also some other related attributes).

// - prediction: double (the predicted class label)

// Select only the features (i.e., the value of the attributes) and the predicted class for each record
Dataset<Row> predictionsDF = predictions.select("features", "prediction");
Logistic regression and structured data: Example

// Make predictions on test documents using the transform() method.
// The transform will only use the 'features' columns
Dataset<Row> predictions = model.transform(test);

// The returned Dataset<Row> has the following schema (attributes)
// - features: vector (values of the attributes)
// - label: double (value of the class label)
// - rawPrediction: vector (nullable = true)
// - probability: vector (The i-th cell contains the probability that the current record belongs to the i-th class)

// The predictive attributes and the predicted class are selected
Dataset<Row> predictionsDF = predictions.select("features", "prediction");

// Save the result in an HDFS file
JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD();
predictionsRDD.saveAsTextFile(outputPath);

// Close the Spark Context object
sc.close();
}
}
The following slides show how to

- Create a classification model based on the decision tree algorithm
 - The model is inferred by analyzing the training data, i.e., the example records/data points for which the value of the class label is known

- Apply the model to new unlabeled data
 - The inferred model is applied to predict the value of the class label of new unlabeled records/data points
The same example structured data already used in the running example related to the logistic regression algorithm are used also in this example related to the decision tree algorithm.

In the following example, the input training data is stored in a text file that contains

- One record/data point per line
- The records/data points are structured data with a fixed number of attributes (four)
 - One attribute is the class label
 - We suppose that the first column of each record contains the class label
 - The other three attributes are the predictive attributes that are used to predict the value of the class label
- The input file has not the header line
Also in this case the training data must be represented by means of a Dataset<Row> characterized by two columns:

- label
- features

The code that is used to solve this problem is similar to the one we used to build a logistic regression model.

The only difference is given by the use of the Decision Tree algorithm instead of the Logistic regression one in the defined Pipeline.

Input training file:

1.0,0.0,1.1,0.1
0.0,2.0,1.0,-1.0
0.0,2.0,1.3,1.0
1.0,0.0,1.2,-0.5

Input training Dataset<Row> to be generated:

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>[0.0,1.1,0.1]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0,1.0,-1.0]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0,1.3,1.0]</td>
</tr>
<tr>
<td>1.0</td>
<td>[0.0,1.2,-0.5]</td>
</tr>
</tbody>
</table>
The file containing the unlabeled data has the same format of the training data file. However, the first column is empty because the class label is unknown. We want to predict the class label value of each unlabeled data by applying the classification model that has been inferred on the training data.

Input unlabeled data file:

-1.0,1.5,1.3
3.0,2.0,-0.1
0.0,2.2,-1.5

Input unlabeled data Dataset<Row> to be generated:

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>[-1.0,1.5,1.3]</td>
</tr>
<tr>
<td>-1.0</td>
<td>[3.0,2.0,-0.1]</td>
</tr>
<tr>
<td>-1.0</td>
<td>[0.0,2.2,-1.5]</td>
</tr>
</tbody>
</table>
After the application of the classification model on the unlabeled data, Spark returns a new Dataset<Row> containing:

- The same columns of the input data
- A new column called prediction
 - For each input unlabeled record, it contains the predicted class label value
- Also other columns, associated with the probabilities of the predictions, are returned
 - We do not consider them in the following example

Input unlabeled data Dataset<Row>

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>[-1.0, 1.5, 1.3]</td>
</tr>
<tr>
<td>-1.0</td>
<td>[3.0, 2.0, -0.1]</td>
</tr>
<tr>
<td>-1.0</td>
<td>[0.0, 2.2, -1.5]</td>
</tr>
</tbody>
</table>

Returned Dataset<Row> with the predicted class label values

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
<th>prediction</th>
<th>rawPrediction</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>[-1.0, 1.5, 1.3]</td>
<td>1.0</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>-1.0</td>
<td>[3.0, 2.0, -0.1]</td>
<td>0.0</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>-1.0</td>
<td>[0.0, 2.2, -1.5]</td>
<td>1.0</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.*;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.DecisionTreeClassifier;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.feature.LabeledPoint;

public class SparkDriver {
 public static void main(String[] args) {
 String inputFileTraining; String inputFileTest; String outputPath;
 inputFileTraining= args[0];
 inputFileTest= args[1];
 outputPath= args[2];

 // Create a Spark Session object and set the name of the application
 // We use some Spark SQL transformation in this program
 SparkSession ss = SparkSession.builder().
 appName("MLlib - Decision Tree").getOrCreate();

 // Create a Java Spark Context from the Spark Session
 // When a Spark Session has already been defined this method
 // is used to create the Java Spark Context
 JavaSparkContext sc = new JavaSparkContext(ss.sparkContext());
 }
}
// Training step

// Read training data from a text file
// Each line has the format: class-label, list of three numerical
// attribute values.
// E.g., 1.0,5.8,0.51.7
JavaRDD<String> trainingData = sc.textFile(inputFileTraining);

// Map each input record/data point of the input file to a LabeledPoint
JavaRDD<LabeledPoint> trainingRDD = trainingData.map(record ->
{
 String[] fields = record.split(",");
 // Fields of 0 contains the id of the class
double classLabel = Double.parseDouble(fields[0]);

 // The other three cells of fields contain the (numerical)
 // values of the three predictive attributes
 // Create an array of doubles containing those values
double[] attributesValues = new double[3];

 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);
});
// Create a dense vector based on the content of
// attributesValues
Vector attrValues = Vectors.dense(attributesValues);

// Return a LabeledPoint based on the content of
// the current line
return new LabeledPoint(classLabel, attrValues);

// Prepare training data.
// We use LabeledPoint, which is a JavaBean.
// We use Spark SQL to convert RDDs of JavaBeans
// into Dataset<Row>. The columns of the Dataset are label
// and features
Dataset<Row> training =
 ss.createDataFrame(trainingRDD, LabeledPoint.class).cache();
// Create a DecisionTreeClassifier object.
// DecisionTreeClassifier is an Estimator that is used to
// create a classification model based on decision trees.
// The algorithm infers a model that can be used to predict the value
// of the label attribute based on content of vector
// that is stored in the feature attribute
DecisionTreeClassifier dc = new DecisionTreeClassifier();

// We can set the values of the parameters of the Decision Tree
// For example we can set the measure that is used to decide if a
// node must be split
// In this case we set gini index
dc.setImpurity("gini");

// Define the pipeline that is used to create the logistic regression
// model on the training data
// In this case the pipeline contains one single stage/step (the model
// generation step).
Pipeline pipeline = new Pipeline().setStages(new PipelineStage[]{dc});
// Execute the pipeline on the training data to build the
// classification model
PipelineModel model = pipeline.fit(training);

// Now, the classification model can be used to predict the class label
// of new unlabeled data

//*************************
// Prediction step
//*************************

// Read unlabeled data
// For the unlabeled data only the predictive attributes are available
// The class label is not available and must be predicted by applying
// the classification model inferred during the previous phase
JavaRDD<String> unlabeledData = sc.textFile(inputFileTest);
Decision trees and structured data: Example

// Map each unlabeled input record/data point of the input file to
// a LabeledPoint
JavaRDD<LabeledPoint> unlabeledRDD = unlabeledData.map(record ->
{
 String[] fields = record.split(",");

 // The last three cells of fields contain the (numerical) values of the
 // three predictive attributes
 // Create an array of doubles containing those three values
 double[] attributesValues = new double[3];
 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);

 // Create a dense vector based in the content of attributesValues
 Vector attrValues = Vectors.dense(attributesValues);

 // The class label in unknown.
 // To create a LabeledPoint a class label value must be specified
 // also for the unlabeled data. I set it to -1 (an invalid value).
 // The specified value does not impact on the prediction because
 // the label column is not used to perform the prediction
 double classLabel = -1;

 // Return a new LabeledPoint
 return new LabeledPoint(classLabel, attrValues);
});

// Create the DataFrame based on the new test data
Dataset<Row> test =
 ss.createDataFrame(unlabeledRDD, LabeledPoint.class);
Decision trees and structured data: Example

// Make predictions on test documents using the transform() method.
// The transform will only use the 'features' columns
Dataset<Row> predictions = model.transform(test);

// The returned Dataset<Row> has the following schema (attributes)
// - features: vector (values of the attributes)
// - label: double (value of the class label)
// - rawPrediction: vector (nullable = true)
// - probability: vector (The i-th cell contains the probability that the
// current record belongs to the i-th class)
// - prediction: double (the predicted class label)

// Select only the features (i.e., the value of the attributes) and
// the predicted class for each record
Dataset<Row> predictionsDF = predictions.select("features", "prediction");

// Save the result in an HDFS file
JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD();
predictionsRDD.saveAsTextFile(outputPath);

// Close the Spark Context object
sc.close();
Frequently the class label is a categorical value (i.e., a string)

As reported before, Spark MLlib works only with numerical values and hence categorical class label values must be mapped to integer (and then double) values
Categorical class labels

- Input training data

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>Attr1</th>
<th>Attr2</th>
<th>Attr3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>0.0</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Negative</td>
<td>2.0</td>
<td>1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>Negative</td>
<td>2.0</td>
<td>1.3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Input Dataset<Row> that must be generated as input for the MLlib classification algorithms

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>[0.0, 1.1, 0.1]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0, 1.0, -1.0]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0, 1.3, 1.0]</td>
</tr>
</tbody>
</table>

The categorical values of categoricalLabel (the class label column) must be mapped to integer values (finally casted to doubles)

- Input training data

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>Attr1</th>
<th>Attr2</th>
<th>Attr3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>0.0</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Negative</td>
<td>2.0</td>
<td>1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>Negative</td>
<td>2.0</td>
<td>1.3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Input Dataset<Row> that must be generated as input for the MLlib classification algorithms

<table>
<thead>
<tr>
<th>label</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>[0.0, 1.1, 0.1]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0, 1.0, -1.0]</td>
</tr>
<tr>
<td>0.0</td>
<td>[2.0, 1.3, 1.0]</td>
</tr>
</tbody>
</table>
The Estimators **StringIndexer** and **IndexToString** support the transformation of categorical class label into numerical one

- StringIndexer maps each categorical value of the class label to an integer (finally casted to a double)
- IndexToString is used to perform the opposite operation

Main steps

1. Use **StringIndexer** to extend the input DataFrame with a new column, called “**label**”, containing the numerical representation of the class label column
2. Create a column, called “**features**”, of type vector containing the predictive features
3. Infer a classification model by using a classification algorithm (e.g., Decision Tree, Logistic regression)
 - The model is built by considering only the values of features and label. All the other columns are not considered by the classification algorithm during the generation of the prediction model
4. Apply the model on a set of unlabeled data to predict their numerical class label.

5. Use `IndexToString` to convert the predicted numerical class label values to the original categorical values.

Categorical class labels: Example – Training data

- **Input training file**
 - Positive, 0.0, 1.1, 0.1
 - Negative, 2.0, 1.0, -1.0
 - Negative, 2.0, 1.3, 1.0

- **Initial training Dataset<Row>**

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>[0.0, 1.1, 0.1]</td>
</tr>
<tr>
<td>Negative</td>
<td>[2.0, 1.0, -1.0]</td>
</tr>
<tr>
<td>Negative</td>
<td>[2.0, 1.3, 1.0]</td>
</tr>
</tbody>
</table>
Categorical class labels: Example – Training data

- Input training file
 Positive,0.0,1.1,0.1
 Negative,2.0,1.0,-1.0
 Negative,2.0,1.3,1.0

- Initial training Dataset<Row>

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>[0.0, 1.1, 0.1]</td>
</tr>
<tr>
<td>Negative</td>
<td>[2.0, 1.0, -1.0]</td>
</tr>
<tr>
<td>Negative</td>
<td>[2.0, 1.3, 1.0]</td>
</tr>
</tbody>
</table>

- Training Dataset<Row> after StringIndexer

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>feature</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>[0.0, 1.1, 0.1]</td>
<td>1.0</td>
</tr>
<tr>
<td>Negative</td>
<td>[2.0, 1.0, -1.0]</td>
<td>0.0</td>
</tr>
<tr>
<td>Negative</td>
<td>[2.0, 1.3, 1.0]</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Categorical class labels: Example – Training data

- Initial training Dataset<Row>

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>[0.0, 1.1, 0.1]</td>
</tr>
<tr>
<td>Negative</td>
<td>[2.0, 1.0, -1.0]</td>
</tr>
<tr>
<td>Negative</td>
<td>[2.0, 1.3, 1.0]</td>
</tr>
</tbody>
</table>

- Training Dataset<Row> after StringIndexer

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>feature</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>[0.0, 1.1, 0.1]</td>
<td>1.0</td>
</tr>
<tr>
<td>Negative</td>
<td>[2.0, 1.0, -1.0]</td>
<td>0.0</td>
</tr>
<tr>
<td>Negative</td>
<td>[2.0, 1.3, 1.0]</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Mapping generated by StringIndexer:
"Positive": 1.0
"Negative": 0.0

Categorical class labels: Example – Unlabeled data

- Input unlabeled data file

\[-1.0, 1.5, 1.3\]
\[3.0, 2.0, -0.1\]
\[0.0, 2.2, -1.5\]

- Initial unlabeled data Dataset<Row>

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>[-1.0, 1.5, 1.3]</td>
</tr>
<tr>
<td>Positive</td>
<td>[3.0, 2.0, -0.1]</td>
</tr>
<tr>
<td>Positive</td>
<td>[0.0, 2.2, -1.5]</td>
</tr>
</tbody>
</table>
Categorical class labels: Example – Unlabeled data

- **Input unlabeled data file**

 \[-1.0, 1.5, 1.3\]
 \[3.0, 2.0, -0.1\]
 \[0.0, 2.2, -1.5\]

The `categoricalLabel` attribute must be set to a valid value also for the unlabeled data otherwise the `StringIndexer` component of the Pipeline raises an error. Select the class label value that you prefer. It does not impact on the predicted class label value.

- **Initial unlabeled data**

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>[-1.0, 1.5, 1.3]</td>
</tr>
<tr>
<td>Positive</td>
<td>[3.0, 2.0, -0.1]</td>
</tr>
<tr>
<td>Positive</td>
<td>[0.0, 2.2, -1.5]</td>
</tr>
</tbody>
</table>

- **Dataset<Row> after prediction + IndexToString**

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>feature</th>
<th>label</th>
<th>prediction</th>
<th>predictedLabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>[-1.0, 1.5, 1.3]</td>
<td>...</td>
<td>1.0</td>
<td>Positive</td>
</tr>
<tr>
<td>...</td>
<td>[3.0, 2.0, -0.1]</td>
<td>...</td>
<td>0.0</td>
<td>Negative</td>
</tr>
<tr>
<td>...</td>
<td>[0.0, 2.2, -1.5]</td>
<td>...</td>
<td>1.0</td>
<td>Positive</td>
</tr>
</tbody>
</table>
Categorical class labels: Example – Unlabeled data

- Initial unlabeled data Dataset<Row>

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>[-1.0, 1.5, 1.3]</td>
</tr>
<tr>
<td>Positive</td>
<td>...</td>
</tr>
<tr>
<td>Positive</td>
<td>...</td>
</tr>
</tbody>
</table>

- Dataset<Row> after prediction + IndexToString

<table>
<thead>
<tr>
<th>categoricalLabel</th>
<th>feature</th>
<th>label</th>
<th>prediction</th>
<th>predictedLabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>[-1.0, 1.5, 1.3]</td>
<td>...</td>
<td>1.0</td>
<td>Positive</td>
</tr>
<tr>
<td>Positive</td>
<td>[3.0, 2.0, -0.1]</td>
<td>...</td>
<td>0.0</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
<td>[0.0, 2.2, -1.5]</td>
<td>...</td>
<td>1.0</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Categorical class labels: Example

- In the following example, the input training data is stored in a text file that contains
 - One record/data point per line
 - The records/data points are structured data with a fixed number of attributes (four)
 - One attribute is the class label
 - Categorical attribute assuming two values: Positive, Negative
 - The other three attributes are the predictive attributes that are used to predict the value of the class label
 - The input file has not the header line
Categorical class labels: Example

- The file containing the **unlabeled data** has the same format of the training data file
 - However, the **first column** is **empty** because the class label is **unknown**
- We want to predict the class label value of each unlabeled data by applying the classification model that has been inferred on the training data

```java
package it.polito.bigdata.spark.sparkmllib;

import java.io.Serializable;
import org.apache.spark.ml.linalg.Vector;

@ SuppressWarnings("serial")
public class MyLabeledPoint implements Serializable {

  private String categoricalLabel;
  private Vector features;

  public MyLabeledPoint(String categoricalLabel, Vector features) {
    this.categoricalLabel = categoricalLabel;
    this.features = features;
  }

  public String getCategoricalLabel() {
    return categoricalLabel;
  }
}
```
Categorical class labels: Example

```java
public Vector getFeatures() {
    return features;
}

public void setFeatures(Vector features) {
    this.features = features;
}
```

Categorical class labels: Example

```java
package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.*;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.DecisionTreeClassifier;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.feature.IndexToString;
import org.apache.spark.ml.feature.StringIndexer;
import org.apache.spark.ml.feature.StringIndexerModel;
```
public class SparkDriver {
 public static void main(String[] args) {
 String inputFileTraining; String inputFileTest; String outputPath;
 inputFileTraining = args[0];
 inputFileTest = args[1];
 outputPath = args[2];

 // Create a Spark Session object and set the name of the application
 // We use some Spark SQL transformation in this program
 SparkSession ss = SparkSession.builder().appName("MLlib - Decision Tree - Categorical label").getOrCreate();

 // Create a Java Spark Context from the Spark Session
 // When a Spark Session has already been defined this method
 // is used to create the Java Spark Context
 JavaSparkContext sc = new JavaSparkContext(ss.sparkContext());

 // *********************************
 // Training step
 // *********************************

 // Read training data from a textual file
 // Each lines has the format: class-label,list of numerical attribute values
 // The class label is a String
 // E.g., Positive,1.0,5.0,4.5,1.2
 JavaRDD<String> trainingData = sc.textFile(inputFileTraining);
// Map each input record/data point of the input file to a MyLabeledPoint object
// MyLabeledPoint is a class that I defined to store the information about
// records/data points with class label of type String
JavaRDD<MyLabeledPoint> trainingRDD = trainingData.map(record -> {
 String[] fields = record.split(" ");
 // Fields of 0 contains the id of the class
 String classLabel = fields[0];
 // The other three cells of fields contain the values of the
 // three predictive attributes
 // Create an array of doubles containing those values
 double[] attributesValues = new double[3];
 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);
 // Create a dense vector based on the content of
 // attributesValues
 Vector attrValues = Vectors.dense(attributesValues);
 // Return a LabeledPoint based on the content of the
 // current line
 return new MyLabeledPoint(classLabel, attrValues);
});
// Prepare training data.
// We use MyLabeledPoint, which is a JavaBean.
// We use Spark SQL to convert RDDs of JavaBeans into DataFrames.
// Each data point has a set of features and a label.

Dataset<Row> training =
 ss.createDataFrame(trainingRDD, MyLabeledPoint.class).cache();

// The StringIndexer Estimator is used to map each class label value to an integer value (casted to a double).
// A new attribute called label is generated by applying transforming the content of the categoricalLabel attribute.
StringIndexerModel labelIndexer = new StringIndexer()
 .setInputCol("categoricalLabel")
 .setOutputCol("label")
 .fit(training);
The StringIndexer Estimator is used to map each class label value to an integer value (casted to a double). A new attribute called label is generated by applying transforming the content of the categoricalLabel attribute.

```
StringIndexerModel labelIndexer = new StringIndexer()
    .setInputCol("categoricalLabel")
    .setOutputCol("label")
    .fit(training);
```

This StringIndexer component is used to map the categorical values of column “categoricalLabel” to a set of integer values stored in the new column called “label”.

Create a DecisionTreeClassifier object. DecisionTreeClassifier is an Estimator that is used to create a classification model based on decision trees. By default, the MLlib decision tree algorithm considers only the content of the features attribute to predict the value of the label attribute. The other attributes are not considered during the generation of the model (i.e., in this case the value of categoricalLabel is not considered by the MLlib decision tree algorithm).

```
DecisionTreeClassifier dc = new DecisionTreeClassifier();
```

We can set the values of the parameters of the Decision Tree. For example we can set the measure that is used to decide if a node must be split. In this case we set it to the gini index.

```
dc.setImpurity("gini");
```
// At the end of the pipeline we must convert indexed labels back // to original labels (from numerical to string). // The content of the prediction attribute is the index of the predicted class // The original name of the predicted class is stored in the predictedLabel // attribute. // IndexToString creates a new column (called predictedLabel in // this example) that is based on the content of the prediction column. // prediction is a double while predictedLabel is a string IndexToString labelConverter = new IndexToString() .setInputCol("prediction") .setOutputCol("predictedLabel") .setLabels(labelIndexer.labels());
Categorical class labels: Example

// Define the pipeline that is used to create the decision tree
// model on the training data.
// In this case the pipeline contains the following steps:
// - Create a new column, called label, containing the numerical
// representation of the original column
// - Run the decision tree algorithm to infer a classification model
// - Convert the numerical predicted class label values into the original
// categorical values (strings)
Pipeline pipeline = new Pipeline()
 .setStages(new PipelineStage[] {labelIndexer, dc, labelConverter});

// Execute the pipeline on the training data to build the
// classification model
PipelineModel model = pipeline.fit(training);

// Now, the classification model can be used to predict the class label
// of new unlabeled data
// ************************************
// Prediction step
// ************************************

// Read unlabeled data
// For the unlabeled data only the predictive attributes are available
// The class label is not available and must be predicted by applying
// the classification model inferred during the previous phase
JavaRDD<String> unlabeledData = sc.textFile(inputFileTest);

// Map each unlabeled input record/data point of the input file to
// a MyLabeledPoint
JavaRDD<MyLabeledPoint> unlabeledRDD = unlabeledData.map(record -> {
 String[] fields = record.split(",");

 // The last three cells of fields contain the (numerical) values of the
 // three predictive attributes
 // Create an array of doubles containing those three values
 double[] attributesValues = new double[3];

 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);

 // Create a dense vector based in the content of attributesValues
 Vector attrValues = Vectors.dense(attributesValues);
Categorical class labels: Example

```java
// The class label in unknown.
// To create a MyLabeledPoint a categoricalLabel value must be
// specified also for the unlabeled data.
// I set it to "Positive" (we must set the value of the class label to
// a valid value otherwise IndexToString raises an error).
// The specified value does not impact on the prediction because
// the categoricalLabel column is not used to perform the
// prediction.
String classLabel = new String("Positive");

// Return a new LabeledPoint
return new MyLabeledPoint(classLabel, attrValues);
});

// Create the DataFrame based on the new test data
Dataset<Row> unlabeled =
    ss.createDataFrame(unlabeledRDD, MyLabeledPoint.class);
```

Categorical class labels: Example

```java
// Make predictions on test documents using the transform() method.
// The transform will only use the 'features' columns
Dataset<Row> predictions = model.transform(unlabeled);

// The returned DataFrame has the following schema (attributes)
// - features: vector (values of the attributes)
// - label: double (value of the class label)
// - rawPrediction: vector (nullable = true)
// - probability: vector (The i-th cell contains the probability that the
//   current record belongs to the i-th class)
// - prediction: double (the predicted class label)
// - predictedLabel: string (nullable = true)

// Select only the features (i.e., the value of the attributes) and
// the predicted class for each record (the categorical version)
Dataset<Row> predictionsDF =
    predictions.select("features", "predictedLabel");
```
// Make predictions on test documents using the transform() method.
// The transform will only use the 'features' columns
Dataset<Row> predictions = model.transform(unlabeled);

// The returned DataFrame has the following schema (attributes)
// - features: vector (values of the attributes)
// - label: double (value of the class label)
// - rawPrediction: vector (nullable = true)
// - probability: vector (current cell contains the probability that the current record belongs to the i-th class)
// - prediction: double (the predicted class label)
// - predictedLabel: string (nullable = true)

// Select only the features (i.e., the value of the attributes) and the predicted class for each record (the categorical version)
Dataset<Row> predictionsDF = predictions.select("features", "predictedLabel");

// Save the result in an HDFS file
JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD();
predictionsRDD.saveAsTextFile(outputPath);

// Close the Spark Context object
sc.close();
Sparse labeled data

Sparse labeled data: The LIBSVM format

- Frequently the training data are sparse
 - E.g., textual data are sparse
 - Each document contains only a subset of the possible words
 - Hence, sparse vectors are frequently used
- MLlib supports reading training examples stored in the LIBSVM format
 - It is a commonly used textual format that is used to represent sparse documents/data points
The LIBSVM format

- It is a textual format in which each line represents a labeled point by using a sparse feature vector:
 - Each line has the format
 - label index1:value1 index2:value2 ...
 - where
 - label is an integer associated with the class label
 - It is the first value of each line
 - The indexes are integer values representing the features
 - The values are the (double) values of the features

Consider the following two records/data points characterized by 4 predictive features and a class label:

- Features = [5.8, 1.7, 0, 0] -- Label = 1
- Features = [4.1, 0, 2.5, 1.2] -- Label = 0

Their LIBSVM format-based representation is the following:

1 1:5.8 2:1.7
0 1:4.1 3:2.5 4:1.2
Sparse labeled data: The LIBSVM format

- LIBSVM files can be loaded into `Dataset<Row>` by combining the following methods:
 - `read()`, `format("libsvm")`, and `load(String inputpath)`
- The returned `Dataset<Row>` (i.e., `DataFrame`) has two columns:
 - `label`: `double`
 - The double value associated with the label
 - `features`: `vector`
 - A sparse vector associated with the predictive features

```
SparkSession ss = parkSession.builder()
    .appName("Test read LIBSVM file").getOrCreate();

Dataset<Row> data = ss.read().format("libsvm")
    .load("sample_libsvm_data.txt");
```