
10/05/2018

1

10/05/2018

2

 The following slides show how to

 Create a classification model based on the logistic
regression algorithm for textual documents

 Apply the model to new textual documents

 The input training dataset represents a
textual document collection

 Each line contains one document and its class

▪ The class label

▪ A list of words (the text of the document)

4

10/05/2018

3

 Consider the following example file
1,The Spark system is based on scala

1,Spark is a new distributed system

0,Turin is a beautiful city

0,Turin is in the north of Italy
 It contains four textual documents
 Each line contains two attributes
 The class label (first attribute)

 The text of the document (second attribute)

5

 Input data before pre-processing

6

Label Text

1 The Spark system is based on scala

1 Spark is a new distributed system

0 Turin is a beautiful city

0 Turin is in the north of Italy

10/05/2018

4

 A set of preprocessing steps must be applied
on the textual attribute before generating a
classification model

7

1. Since Spark ML algorithms work only on
“Table”, the textual part of the input data
must be translated in a set of attributes in
order to represent the data as a table

 Usually a table with an attribute for each word is
generated

8

10/05/2018

5

2. Many words are useless (e.g., conjunctions)

 Stopwords are usually removed

9

 The words appearing in almost all documents
are not characterizing the data
 Hence, they are not very important for the

classification problem
 The words appearing in few documents allow

distinguish the content of those documents
(and hence the class label) with respect to the
others
 Hence, they are very important for the

classification problem

10

10/05/2018

6

3. Traditionally a weight, based on the TF-IDF
measure, is used to assign a difference
importance to the words based on their
frequency in the collection

11

 Input data after the pre-processing
transformations (tokenization, stopword
removal, TF-IDF computation)

12

Label Spark system scala …..

1 0.5 0.3 0.75 ..

1 0.5 0.3 0 …

0 0 0 0 …

0 0 0 0 …

10/05/2018

7

 The Dataset<Row> associated with input
data after the pre-processing transformations
must contain, as usual, the columns
 label

▪ Class label value

 features
▪ The pre-processed version of the input text

 There are also some other intermediate columns,
related to applied transformations, but they are
not considered by the classification algorithm

13

 The Dataset<Row> associated with input
data after the pre-processing transformations
must contain, as usual, the columns

14

label features text ….. …..

1 [0.5, 0.3, 0.75, ..] The Spark system is based on scala

1 [0.5, 0.3, 0, ..] Spark is a new distributed system … …

0 [0, 0, 0, ..] Turin is a beautiful city … …

0 [0, o, o, ..] Turin is in the north of Italy … …

10/05/2018

8

 The Dataset<Row> associated with input
data after the pre-processing transformations
must contain, as usual, the columns

15

label features text ….. …..

1 [0.5, 0.3, 0.75, ..] The Spark system is based on scala

1 [0.5, 0.3, 0, ..] Spark is a new distributed system … …

0 [0, 0, 0, ..] Turin is a beautiful city … …

0 [0, o, o, ..] Turin is in the north of Italy … …

Only “label” and “features” are considered by the
classification algorithm

package it.polito.bigdata.spark.sparkmllib;

import java.io.Serializable;

public class LabeledDocument implements Serializable {
 private double label;
 private String text;

 public LabeledDocument(double label, String text) {
 this.text = text;
 this.label = label;
 }

16

10/05/2018

9

 public String getText() { return this.text; }
 public void setText(String text) { this.text = text; }

 public double getLabel() { return this.label; }
 public void setLabel(double label) { this.label = label; }
 }
);

17

package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.*;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.ml.feature.HashingTF;
import org.apache.spark.ml.feature.IDF;
import org.apache.spark.ml.feature.StopWordsRemover;

18

10/05/2018

10

 public static void main(String[] args) {
 String inputFileTraining; String inputFileTest; String outputPath;

 inputFileTraining=args[0];
 inputFileTest=args[1];
 outputPath=args[2];

 // Create a Spark Session object and set the name of the application
 // We use some Spark SQL transformation in this program
 SparkSession ss = SparkSession.builder()
 .appName("MLlib - logistic regression").getOrCreate();

 // Create a Java Spark Context from the Spark Session
 // When a Spark Session has already been defined this method
 // is used to create the Java Spark Context
 JavaSparkContext sc = new JavaSparkContext(ss.sparkContext());

19

 // *************************
 // Training step
 // *************************

 // Read training data from a textual file
 // Each lines has the format: class-label,list of words
 // E.g., 1,hadoop mapreduce
 JavaRDD<String> trainingData=sc.textFile(inputFileTraining);

20

10/05/2018

11

 // Map each element (each line of the input file) to a LabeledDocument
 // LabeledDocument is a class defined in this application. Each instance
 // of LabeledDocument is characterized by two attributes:
 // - private double label
 // - private String text
 // LabeledDocument represents a "document" and the related class label.
 JavaRDD<LabeledDocument> trainingRDD=trainingData.map(record -> {
 String[] fields = record.split(",");

 // fields[0] contains the class label
 double classLabel = Double.parseDouble(fields[0]);

 // The content of the document is after the comma
 String text = fields[1];
 // Return a new LabeledDocument
 return new LabeledDocument(classLabel, text);
 }).cache();

21

 // Prepare training data.
 // We use LabeledDocument, which is a JavaBean.
 // We use Spark SQL to convert RDDs of JavaBeans
 // into Dataset<Row>. The columns of the Dataset are label
 // and features
 Dataset<Row> training = ss
 .createDataFrame(trainingRDD, LabeledDocument.class).cache();

22

10/05/2018

12

 // Configure an ML pipeline, which consists of five stages:
 // tokenizer -> split sentences in set of words
 // remover -> remove stopwords
 // hashingTF -> map set of words to a fixed-length feature vectors (each
 // word becomes a feature and the value of the feature is the frequency of
 // the word in the sentence)
 // idf -> compute the idf component of the TF-IDF measure
 // lr -> logistic regression classification algorithm

 // The Tokenizer splits each sentence in a set of words.
 // It analyzes the content of column "text" and adds the
 // new column "words" in the returned DataFrame
 Tokenizer tokenizer = new Tokenizer()
 .setInputCol("text")
 .setOutputCol("words");

23

 // Remove stopwords.
 // the StopWordsRemover component returns a new DataFrame with
 // new column called "filteredWords". "filteredWords" is generated
 // by removing the stopwords from the content of column "words"
 StopWordsRemover remover = new StopWordsRemover()
 .setInputCol("words")
 .setOutputCol("filteredWords");

24

10/05/2018

13

 // Map words to a features
 // Each word in filteredWords must become a feature in a Vector object
 // The HashingTF Transformer performs this operation.
 // This operations is based on a hash function and can potentially
 // map two different word to the same "feature". The number of conflicts
 // in influenced by the value of the numFeatures parameter.
 // The "feature" version of the words is stored in Column "rawFeatures".
 // Each feature, for a document, contains the number of occurrences
 // of that feature in the document (TF component of the TF-IDF measure)
 HashingTF hashingTF = new HashingTF()
 .setNumFeatures(1000)
 .setInputCol("filteredWords")
 .setOutputCol("rawFeatures");

25

 // Apply the IDF transformation.
 // Update the weight associated with each feature by considering also the
 // inverse document frequency component. The returned new column
 // is called "features", that is the standard name for the column that
 // contains the predictive features used to create a classification model
 IDF idf = new IDF()
 .setInputCol("rawFeatures")
 .setOutputCol("features");

26

10/05/2018

14

 // Create a classification model based on the logistic regression algorithm
 // We can set the values of the parameters of the
 // Logistic Regression algorithm using the setter methods.
 LogisticRegression lr = new LogisticRegression()
 .setMaxIter(10)
 .setRegParam(0.01);

 // Define the pipeline that is used to create the logistic regression
 // model on the training data.
 // In this case the pipeline is composed of five steps
 // - text tokenizer
 // - stopword removal
 // - TF-IDF computation (performed in two steps)
 // - Logistic regression model generation
 Pipeline pipeline = new Pipeline()
 .setStages(new PipelineStage[] {tokenizer, remover, hashingTF, idf, lr});

27

 // Execute the pipeline on the training data to build the
 // classification model
 PipelineModel model = pipeline.fit(training);

 // Now, the classification model can be used to predict the class label
 // of new unlabeled data

28

10/05/2018

15

 // *************************
 // Prediction step
 // *************************

 // Read unlabeled data
 // For the unlabeled data only the predictive attributes are available
 // The class label is not available and must be predicted by applying
 // the classification model inferred during the previous phase
 JavaRDD<String> unlabeledData=sc.textFile(inputFileTest);

29

 // Map each unlabeled input document of the input file to a
 LabeledDocument JavaRDD<LabeledDocument> unlabeledRDD=

 unlabeledData.map(record -> {
 String[] fields = record.split(",");
 // The content of the document is after the comma
 String text = fields[1];

 // The class label in unknown.
 // To create a LabeledDocument a class label value must be
 // specified also for the unlabeled data. I set it to -1 (an invalid
 // value).
 double classLabel = -1;

 // Return a new LabeledDocument
 return new LabeledDocument(classLabel, text);
 });

30

10/05/2018

16

 // Create the DataFrame based on the new unlabeled data
 Dataset<Row> unlabeled =
 ss.createDataFrame(unlabeledRDD, LabeledDocument.class);

 // Make predictions on unlabeled documents by using the
 // Transformer.transform() method.
 // The transform will only use the 'features' columns
 // The returned DataFrame has the following schema (attributes)
 // - features: vector (values of the attributes)
 // - label: double (value of the class label)
 // - rawPrediction: vector (nullable = true)
 // - probability: vector (The i-th cell contains the probability that the
 // current record belongs to the i-th class
 // - prediction: double (the predicted class label)

 Dataset<Row> predictions = model.transform(unlabeled);

31

 // Select only the text and
 // the predicted class for each record/document
 Dataset<Row> predictionsDF=predictions.select("text", "prediction");

 // Save the result in an HDFS file
 JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD();
 predictionsRDD.saveAsTextFile(outputPath);

 // Close the Spark Context object
 sc.close();
 }
}

32

