Data warehouse
Introduction

Elena Baralis
Politecnico di Torino
Decision support systems

• Huge operational databases are available in most companies
 □ these databases may provide a large wealth of useful information

• Decision support systems provide means for
 □ in depth analysis of a company’s business
 □ faster and better decisions
Strategic decision support

• Demand evolution analysis and forecast
• Critical business areas identification
• Budgeting and management transparency
 – reporting, practices against frauds and money laundering
• Identification and implementation of winning strategies
 □ cost reduction and profit increase
Business Intelligence

- BI provides support to strategic decision support in companies
- Objective: transforming company data into actionable information
 - at different detail levels
 - for analysis applications
- Users may have heterogeneous needs
- BI requires an appropriate hardware and software infrastructure
Applications

• Manufacturing companies: order management, client support
• Distribution: user profile, stock management
• Financial services: buyer behavior (credit cards)
• Insurance: claim analysis, fraud detection
• Telecommunication: call analysis, churning, fraud detection
• Public service: usage analysis
• Health: service analysis and evaluation
Data warehouse

• Database devoted to decision support, which is kept *separate* from company operational databases

• Data which is
 – devoted to a specific subject
 – Integrated and consistent
 – time dependent, non volatile

used for decision support in a company

W. H. Inmon, Building the data warehouse, 1992
Why separate data?

- **Performance**
 - complex queries reduce performance of operational transaction management
 - different access methods at the physical level
- **Data management**
 - missing information (e.g., history)
 - data consolidation
 - data quality (inconsistency problems)
Data structure and data analysis

Elena Baralis
Politecnico di Torino
Multidimensional representation

- Data are represented as an (hyper)cube with three or more dimensions
- Measures on which analysis is performed: cells at dimension intersection
- Data warehouse for tracking sales in a supermarket chain:
 - dimensions: product, shop, time
 - measures: sold quantity, sold amount, ...
Multidimensional representation

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Relational representation: star model

• Numerical measures stored in the *fact table*
 – attribute domain is numeric

• *Dimensions* describe the context of each measure in the fact table
 – characterized by many descriptive attributes
Example

Data warehouse for tracking sales in a supermarket chain

- Shop
- Sale
- Product
- Date
Data warehouse size

- Time dimension: 2 years x 365 days
- Shop dimension: 300 shops
- Product dimension: 30,000 products, of which 3,000 sold every day in every shop
- Number of rows in the fact table:
 \[730 \times 300 \times 3000 = 657 \text{ millions} \]

\[\Rightarrow \text{Size of the fact table} \approx 21\text{GB} \]
Data analysis tools

- OLAP analysis: complex aggregate function computation
 - support to different types of aggregate functions
 (e.g., moving average, top ten)
- Data analysis by means of data mining techniques
 - various analysis types
 - significant algorithmic contribution
Data analysis tools

- **Presentation**
 - separate activity: data returned by a query may be rendered by means of different presentation tools

- **Motivation search**
 - Data exploration by means of progressive, “incremental” refinements (e.g., drill down)
Data warehouse architectures

Elena Baralis
Politecnico di Torino
Data warehouse architectures

• Separation between transactional computing and data analysis
 – avoid one level architectures

• Architectures characterized by two or more levels
 – separate to a different extent data incoming into the data warehouse from analyzed data
 – more scalable
Data warehouse: architecture

- Metadata
- DW management
- ETL tools
- OLAP servers
- Analysis tools
- Data warehouse
- Data marts
- (External) data sources
- Data Analysis
Data warehouse and data mart

Company data warehouse: it contains *all* the information on the company business
 - extensive functional modelling process
 - design and implementation require a long time

Data mart: departimental information subset focused on a given subject
 - two architectures
 * dependent, fed by the company data warehouse
 * independent, fed directly by the sources
 - faster implementation
 - requires careful design, to avoid subsequent data mart integration problems
Servers for Data Warehouses

- **ROLAP (Relational OLAP) server**
 - extended relational DBMS
 - compact representation for sparse data
 - SQL extensions for aggregate computation
 - specialized access methods which implement efficient OLAP data access

- **MOLAP (Multidimensional OLAP) server**
 - data represented in proprietary (multidimensional) matrix format
 - sparse data require compression
 - special OLAP primitives

- **HOLAP (Hybrid OLAP) server**
Extraction, Transformation and Loading (ETL)

• Prepares data to be loaded into the data warehouse
 – data extraction from (OLTP and external) sources
 – data cleaning
 – data transformation
 – data loading

• Performed
 – when the DW is first loaded
 – during periodical DW refresh
ETL process

- **Data extraction**: data acquisition from sources
- **Data cleaning**: techniques for improving data quality (correctness and consistency)
- **Data transformation**: data conversion from operational format to data warehouse format
- **Data loading**: update propagation to the data warehouse
Metadata

metadata = data about data

• Different types of metadata:
 – for data transformation and loading: describe data sources and needed transformation operations
 • Useful using a common notation to represent data sources and data after transformation
 • CWMI (Common Warehouse Metadata Initiative): standard proposed by OMG to exchange data between DW tools and repository of metadata in heterogeneous and distributed environments
 – for data management: describe the structure of the data in the data warehouse
 • also for materialized view
 – for query management: data on query structure and to monitor query execution
 - SQL code for the query
 - execution plan
 - memory and CPU usage
Two level architecture

Data warehouse level

ETL tools

Metadata

DW management

OLAP servers

Analysis tools

Data sources (operational and external)

Source level

Data warehouse

Data marts

Data warehouse

Source

Copyright – All rights reserved

INTRODUCTION - 24
Two level architecture features

- Decoupling between source and DW data
 - management of external (not OLTP) data sources (e.g., text files)
 - data modelling suited for OLAP analysis
 - physical design tailored for OLAP load
- Easy management of different temporal granularity of operational and analytical data
- Partitioning between transactional and analytical load
- “On the fly” data transformation and cleaning (ETL)
Three level architecture

Source level

Data sources (operational and external)

ETL tools

Staging area

ETL level

Loading

Data warehouse

Data warehouse level

Data marts

OLAP servers

Analysis tools

Data analysis

Metadata

DW management

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Three level architecture features

• **Staging area**: buffer area allowing the separation between ET management and data warehouse loading
 – complex transformation and cleaning operations are eased
 – provides an integrated model of business data, still close to OLTP representation
 – sometime denoted as Operational Data Store (ODS)

• Introduces further redundancy
 – more disk space is required for data storage