Data warehouse design

Elena Baralis
Politecnico di Torino
Risk factors

- High user expectation
 - the data warehouse is *the* solution of the company’s problems

- Data and OLTP process quality
 - incomplete or unreliable data
 - non integrated or non optimized business processes

- “Political” management of the project
 - cooperation with “information owners”
 - system acceptance by end users
 - deployment
 - appropriate training
Data warehouse design

• Top-down approach
 – the data warehouse provides a global and complete representation of business data
 – significant cost and time consuming implementation
 – complex analysis and design tasks

• Bottom-up approach
 – incremental growth of the data warehouse, by adding data marts on specific business areas
 – separately focused on specific business areas
 – limited cost and delivery time
 – easy to perform intermediate checks
Business Dimensional Lifecycle (Kimball)

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Data mart design

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Requirement analysis

Elena Baralis
Politecnico di Torino
Requirement analysis

• It collects
 – data analysis requirements to be supported by the data mart
 – implementation constraints due to existing information systems

• Requirement sources
 – business users
 – operational system administrators

• The first selected data mart is
 – crucial for the company
 – feded by (few) reliable sources
Application requirements

• Description of relevant events (facts)
 – each fact represents a category of events which are relevant for the company
 • examples: (in the CRM domain) complaints, services
 – characterized by descriptive dimensions (setting the granularity), history span, relevant measures
 – informations are gathered in a glossary

• Workload description
 – periodical business reports
 – queries expressed in natural language
 • example: number of complaints for each product in the last month
Structural requirements

• Feeding periodicity
• Available space for
 – data
 – derived data (indices, materialized views)
• System architecture
 – level number
 – dependent or independent data marts
• Deployment planning
 – start up
 – training
Conceptual design

Elena Baralis
Politecnico di Torino
Conceptual design

• No currently adopted modeling formalism
 – ER model not adequate

• *Dimensional Fact Model* (Golfarelli, Rizzi)
 – graphical model supporting conceptual design
 – for a given fact, it defines a *fact schema* modelling
 • dimensions
 • hierarchies
 • measures
 – it provides design documentation both for requirement review with users, and after deployment
Dimensional Fact Model

• Fact
 – it models a set of relevant events (sales, shippings, complaints)
 – it evolves with time

• Dimension
 – it describes the analysis coordinates of a fact (e.g., each sale is described by the sale date, the shop and the sold product)
 – it is characterized by many, typically categorical, attributes

• Measure
 – it describes a numerical property of a fact (e.g., each sale is characterized by a sold quantity)
 – aggregates are frequently performed on measures

DFM: Hierarchy

- Each dimension can have a set of associated attributes
- The attributes describe the dimension at different abstraction levels and can be structured as a hierarchy
- The hierarchy represents a generalization relationship among a subset of attributes in a dimension (e.g., geographic hierarchy for the shop dimension)
- The hierarchy represents a functional dependency (1:n relationship)

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Comparison with ER

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Advanced DFM

Aggregation

- Aggregation computes measures with a coarser granularity than those in the original fact schema
 - detail reduction is usually obtained by climbing a hierarchy
 - standard aggregate operators: SUM, MIN, MAX, AVG, COUNT

- Measure characteristics
 - additive
 - not additive: cannot be aggregated along a given hierarchy by means of the SUM operator
 - not aggregable
Measure classification

• **Stream measures**
 – can be evaluated cumulatively at the end of a time period
 – can be aggregated by means of all standard operators
 – examples: sold quantity, sale amount

• **Level measures**
 – evaluated at a given time (snapshot)
 – not additive along the time dimension
 – examples: inventory level, account balance

• **Unit measures**
 – evaluated at a given time and expressed in relative terms
 – not additive along any dimension
 – examples: unit price of a product
Aggregate operators

<table>
<thead>
<tr>
<th>category</th>
<th>type</th>
<th>product</th>
<th>1999</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>year</td>
<td>quart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>home cleaning</td>
<td>washing powder</td>
<td>Brillo</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sbianco</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lucido</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manipulite</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scent</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>soap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>milk</td>
<td></td>
<td>Latte F Slurp</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latte U Slurp</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yogurt Slurp</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>soda</td>
<td></td>
<td>Bevimi</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colissima</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Aggregate operators

• Distributive
 – can always compute higher level aggregations from more detailed data
 – examples: sum, min, max
Non distributive operators

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>home cleaning</td>
<td>washing</td>
<td>Brillo</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2,2</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>powder</td>
<td>Sbianco</td>
<td></td>
<td></td>
<td>1,5</td>
<td>1,5</td>
<td>2</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lucido</td>
<td></td>
<td></td>
<td>–</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>soap</td>
<td>Manipulite</td>
<td></td>
<td></td>
<td>1</td>
<td>1,2</td>
<td>1,5</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scent</td>
<td></td>
<td></td>
<td>1,5</td>
<td>1,5</td>
<td>2</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Measure: unit price

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>home cleaning</td>
<td>wash. p.</td>
<td>wash. p.</td>
<td></td>
<td></td>
<td>1,75</td>
<td>2,17</td>
<td>2,40</td>
<td>2,67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>soap</td>
<td>soap</td>
<td></td>
<td></td>
<td>1,25</td>
<td>1,35</td>
<td>1,75</td>
<td>1,50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>avg:</td>
<td></td>
<td></td>
<td>1,50</td>
<td>1,76</td>
<td>2,08</td>
<td>2,09</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>home clean.</td>
<td></td>
<td></td>
<td></td>
<td>1,50</td>
<td>1,84</td>
<td>2,14</td>
<td>2,38</td>
<td></td>
</tr>
</tbody>
</table>

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Aggregate operators

- Distributive
 - can always compute higher level aggregations from more detailed data
 - examples: sum, min, max

- Algebraic
 - can compute higher level aggregations from more detailed data only when supplementary support measures are available
 - examples: avg (it requires count)

- Olistic
 - can not compute higher level aggregations from more detailed data
 - examples: mode, median
Advanced DFM

Advanced DFM

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Factless fact schema

- Some events are not characterized by measures
 - empty (i.e., factless) fact schema
 - it records occurrence of an event
- Used for
 - counting occurred events (e.g., course attendance)
 - representing events not occurred (coverage set)

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Representing time

• Data modification over time is explicitly represented by event occurrences
 – time dimension
 – events stored as facts

• Also dimensions may change over time
 – modifications are typically slower
 • slowly changing dimension [Kimball]
 – examples: client demographic data, product description
 – if required, dimension evolution should be explicitly modeled
How to represent time (type I)

• Snapshot of the current value
 – data is overwritten with the current value
 – it overrides the past with the current situation
 – used when an explicit representation of the data change is not needed
 – example
 • customer Mario Rossi changes marital status after marriage
 • all his purchases correspond to the “married” customer
How to represent time (type II)

• Events are related to the temporally corresponding dimension value
 – after each state change in a dimension
 • a new dimension instance is created
 • new events are related to the new dimension instance
 – events are partitioned after the changes in dimensional attributes
 – example
 • customer Mario Rossi changes marital status after marriage
 • his purchases are partitioned in purchases performed by “unmarried” Mario Rossi and purchases performed by “married” Mario Rossi (a new instance of Mario Rossi)
How to represent time (type III)

• All events are mapped to a dimension value sampled at a given time
 – it requires the explicit management of dimension changes during time
 • the dimension schema is modified by introducing
 – two timestamps: validity start and validity end
 – a new attribute which allows identifying the sequence of modifications on a given instance (e.g., a “master” attribute pointing to the root instance)
 • each state change in the dimension requires the creation of a new instance
How to represent time (type III)

- Example
 - customer Mario Rossi changes marital status after marriage
 - validity end timestamp of first Mario Rossi instance is given by the marriage date
 - validity start timestamp of the new instance is the same day
 - purchases are partitioned as in type II
 - a new attribute allows tracking all changes of Mario Rossi instance
Workload

• Workload defined by
 – standard reports
 – approximate estimates discussed with users

• Actual workload difficult to evaluate at design time
 – if the data warehouse succeeds, user and query number may grow
 – query type may vary over time

• Data warehouse tuning
 – performed after system deployment
 – requires monitoring the actual system workload
Data volume

• Estimation of the space required by the data mart
 – for data
 – for derived data (indices, materialized views)

• To be considered
 – event cardinality for each fact
 – domain cardinality (number of distinct values) for hierarchy attributes
 – attribute length

• It depends on the temporal span of data storage

• Sparsity
 – occurred events are not all combinations of the dimension elements
 – example: the percentage of products actually sold in each shop and day is roughly 10% of all combinations
Sparsity

- It decreases with increasing data aggregation level
- May significantly affect the accuracy in estimating aggregated data cardinality

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Logical design

Elena Baralis
Politecnico di Torino
Logical design

• We address the relational model (ROLAP)
 – inputs
 • conceptual fact schema
 • workload
 • data volume
 • system constraints
 – output
 • relational logical schema

• Based on different principles with respect to traditional logical design
 – data redundancy
 – table denormalization
Star schema

• Dimensions
 – one table for each dimension
 – surrogate (generated) primary key
 – it contains all dimension attributes
 – hierarchies are not explicitly represented
 • all attributes in a table are at the same level
 – totally denormalized representation
 • it causes data redundancy

• Facts
 – one fact table for each fact schema
 – primary key composed by foreign keys of all dimensions
 – measures are attributes of the fact table
Star schema

Snowflake schema

• Some functional dependencies are separated, by partitioning dimension data in several tables
 – a new table separates two branches of a dimensional hierarchy (hierarchy is cut on a given attribute)
 – a new foreign key correlates the dimension with the new table
• Decrease in space required for storing the dimension
 – decrease is frequently not significant
• Increase in cost for reading entire dimension
 – one or more joins are needed
Snowflake schema

Copyright – All rights reserved
Star or snowflake?

- The snowflake schema is usually not recommended
 - storage space decrease is rarely beneficial
 - most storage space is consumed by the fact table (difference with dimensions is several orders of magnitude)
 - cost of join execution may be significant
- The snowflake schema may be useful
 - when part of a hierarchy is shared among dimensions (e.g., geographic hierarchy)
 - for materialized views, which require an aggregate representation of the corresponding dimensions
Multiple edges

- Implementation techniques
 - bridge table
 - new table which models many to many relationship
 - new attribute weighting the contribution of tuples in the relationship
 - push down
 - multiple edge integrated in the fact table
 - new corresponding dimension in the fact table
Multiple edges

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Multiple edges

• Queries
 – Weighted query: consider the weight of the multiple edge
 • example: author income
 • by using bridge table:

 \[
 \text{SELECT Author_ID, SUM(Income*Weight)} \\
 \ldots \\
 \text{group by Author_ID}
 \]
 – Impact query: do not consider the weight of the multiple edge
 • example: book copies sold for each author
 • by using bridge table:

 \[
 \text{SELECT Author_ID, SUM(Quantity)} \\
 \ldots \\
 \text{group by Author_ID}
 \]
Multiple edges

• Comparison
 – weight is explicit in the bridge table, but wired in the fact table for push down
 • (push down) hard to perform impact queries
 • (push down) weight is computed when feeding the DW
 • (push down) weight modifications are hard
 – push down causes significant redundancy in the fact table
 – query execution cost is lower for push down
 • less joins
Degenerate dimensions

• Dimensions with a single attribute
Degenerate dimensions

• Implementations
 – (usually) directly integrated into the fact table
 • only for attributes with a (very) small size
 – junk dimension
 • single dimension containing several degenerate dimensions
 • no functional dependencies among attributes in the junk dimension
 – all attribute value combinations are allowed
 – feasible only for attribute domains with small cardinality
Junk dimension

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Copyright – All rights reserved
Materialized views

Elena Baralis
Politecnico di Torino
Materialized views

- Precomputed summaries for the fact table
 - explicitly stored in the data warehouse
 - provide a performance increase for aggregate queries

\[v_1 = \{\text{product, date, shop}\} \]
\[v_2 = \{\text{type, date, city}\} \]
\[v_3 = \{\text{category, month, city}\} \]
\[v_4 = \{\text{type, month, region}\} \]
\[v_5 = \{\text{quarter, region}\} \]

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Materialized views

• Defined by SQL statements
• Example: definition of v_3
 – Starting from base tables or views with higher granularity

 \[
 \text{group by City, Category, Month}
 \]
 – Aggregation (SUM) on Quantity, Income measures
 – Reduction of detail in dimensions
Materialized views

- Materialized views may be exploited for answering several different queries
 - not for all aggregation operators

Materialized view selection

• Huge number of allowed aggregations
 – most attribute combinations are eligible
• Selection of the “best” materialized view set
• Cost function minimization
 – query execution cost
 – view maintainance (update) cost
• Constraints
 – available space
 – time window for update
 – response time
 – data freshness
Materialized view selection

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Copyright – All rights reserved

DATA WAREHOUSE: DESIGN - 52

Elena Baralis
Politecnico di Torino
Materialized view selection

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Copyright – All rights reserved
Materialized view selection

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Materialized view selection

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Copyright – All rights reserved
Physical design

Elena Baralis
Politecnico di Torino
Physical design

• Workload characteristics
 – aggregate queries which require accessing a large fraction of each table
 – read-only access
 – periodic data refresh, possibly rebuilding physical access structures (indices, views)

• Physical structures
 – index types different from OLTP
 • bitmap index, join index, bitmapped join index, ...
 • B⁺-tree index not appropriate for
 – attributes with low cardinality domains
 – queries with low selectivity
 – materialized views
 • query optimizer should be able to exploit them
Physical design

• Optimizer characteristics
 – should consider statistics when defining the access plan (cost based)
 – aggregate navigation

• Physical design procedure
 – selection of physical structures supporting most frequent (or most relevant) queries
 – selection of structures improving performance of more than one query
 – constraints
 • disk space
 • available time window for data update
Physical design

• Tuning
 – a posteriori change of physical access structures
 – workload monitoring tools are needed
 – frequently required for OLAP applications

• Parallelism
 – data fragmentation
 – query parallelization
 • inter-query
 • intra-query
 – join and group by lend themselves well to parallel execution
Index selection

• Indexing dimensions
 – attributes frequently involved in selection predicates
 – if domain cardinality is high, then B-tree index
 – if domain cardinality is low, then bitmap index

• Indices for join
 – indexing only foreign keys in the fact table is rarely appropriate
 – bitmapped join index is suggested (if available)

• Indices for group by
 – use materialized views
ETL Process

Elena Baralis
Politecnico di Torino
Extraction, Transformation and Loading (ETL)

• Prepares data to be loaded into the data warehouse
 – data extraction from (OLTP and external) sources
 – data cleaning
 – data transformation
 – data loading

• Eased by exploiting the staging area

• Performed
 – when the DW is first loaded
 – during periodical DW refresh
Extraction

• Data acquisition from sources
• Extraction methods
 – static: snapshot of operational data
 • performed during the first DW population
 – incremental: selection of updates that took place after last extraction
 • exploited for periodical DW refresh
 • immediate or deferred
• The selection of which data to extract is based on their quality
Extraction

• It depends on how operational data is collected
 – historical: all modifications are stored for a given time in the OLTP system
 • bank transactions, insurance data
 • operationally simple
 – partly historical: only a limited number of states is stored in the OLTP system
 • operationally complex
 – transient: the OLTP system only keeps the current data state
 • example: stock inventory
 • operationally complex
Incremental extraction

• **Application assisted**
 – data modifications are captured by ad hoc application functions
 – requires changing OLTP applications (or APIs for database access)
 – increases application load
 – hardly avoidable in legacy systems

• **Log based**
 – log data is accessed by means of appropriate APIs
 – log data format is usually proprietary
 – efficient, no interference with application load
Incremental extraction

• Trigger based
 – triggers capture interesting data modifications
 – does not require changing OLTP applications
 – increases application load

• Timestamp based
 – modified records are marked by the (last) modification timestamp
 – requires modifying the OLTP database schema (and applications)
 – deferred extraction, may lose intermediate states if data is transient
Comparison of extraction techniques

<table>
<thead>
<tr>
<th>Management of transient or semi-periodic data</th>
<th>Static</th>
<th>Timestamps</th>
<th>Application assisted</th>
<th>Trigger</th>
<th>Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Incomplete</td>
<td>Complete</td>
<td>Complete</td>
<td>Complete</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Support to file-based systems</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
<th>Rare</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Implementation technique</th>
<th>Tools</th>
<th>Tools or internal developments</th>
<th>Internal developments</th>
<th>Tools</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs of enterprise specific development</td>
<td>None</td>
<td>Medium</td>
<td>High</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Use with legacy systems</td>
<td>Yes</td>
<td>Difficult</td>
<td>Difficult</td>
<td>Difficult</td>
<td>Yes</td>
</tr>
<tr>
<td>Changes to applications</td>
<td>None</td>
<td>Likely</td>
<td>Likely</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DBMS-dependent procedures</td>
<td>Limited</td>
<td>Limited</td>
<td>Variabile</td>
<td>High</td>
<td>Limited</td>
</tr>
<tr>
<td>Impact on operational system performance</td>
<td>None</td>
<td>None</td>
<td>Medium</td>
<td>Medium</td>
<td>None</td>
</tr>
<tr>
<td>Complexity of extraction procedures</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
</tbody>
</table>

From Devlin, Data warehouse: from architecture to implementation, Addisono-Wesley, 1997
Incremental extraction

<table>
<thead>
<tr>
<th>Cod</th>
<th>Product</th>
<th>Customer</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Greco di tufo</td>
<td>Malavasi</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Barolo</td>
<td>Maio</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>Barbera</td>
<td>Lumini</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>Sangiovese</td>
<td>Cappelli</td>
<td>45</td>
</tr>
</tbody>
</table>

4/4/2010

<table>
<thead>
<tr>
<th>Cod</th>
<th>Product</th>
<th>Customer</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Greco di tufo</td>
<td>Malavasi</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Barolo</td>
<td>Maio</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>Trebbiano</td>
<td>Maltoni</td>
<td>150</td>
</tr>
</tbody>
</table>

6/4/2010

<table>
<thead>
<tr>
<th>Cod</th>
<th>Product</th>
<th>Customer</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Barbera</td>
<td>Lumini</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>Sangiovese</td>
<td>Cappelli</td>
<td>145</td>
</tr>
<tr>
<td>5</td>
<td>Vermentino</td>
<td>Maltoni</td>
<td>25</td>
</tr>
</tbody>
</table>

Incremental difference

<table>
<thead>
<tr>
<th>Cod</th>
<th>Product</th>
<th>Customer</th>
<th>Qty</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Barbera</td>
<td>Lumini</td>
<td>75</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>Sangiovese</td>
<td>Cappelli</td>
<td>145</td>
<td>U</td>
</tr>
<tr>
<td>5</td>
<td>Vermentino</td>
<td>Maltoni</td>
<td>25</td>
<td>I</td>
</tr>
<tr>
<td>6</td>
<td>Trebbiano</td>
<td>Maltoni</td>
<td>150</td>
<td>I</td>
</tr>
</tbody>
</table>

Data cleaning

• Techniques for improving data quality (correctness and consistency)
 – duplicate data
 – missing data
 – unexpected use of a field
 – impossible or wrong data values
 – inconsistency between logically connected data

• Problems due to
 – data entry errors
 – different field formats
 – evolving business practices
Data cleaning

- Each problem is solved by an ad hoc technique
 - data dictionary
 - appropriate for data entry errors or format errors
 - can be exploited only for data domains with limited cardinality
 - approximate fusion
 - appropriate for detecting duplicates/similar data correlations
 - approximate join
 - purge/merge problem
 - outlier identification, deviations from business rules
- Prevention is the best strategy
 - reliable and rigorous OLTP data entry procedures
Approximate join

- The join operation should be executed based on common fields, not representing the customer identifier

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Purge/Merge problem

• Duplicate tuples should be identified and removed
• A criterion is needed to evaluate record similarity

Data cleaning and transformation example

Normalization

Elena Baralis
C.so Duca degli Abruzzi 24
20129 Torino (I)

name: Elena
surname: Baralis
address: C.so Duca degli Abruzzi 24
ZIP: 20129
city: Torino
country: Italia

Standardization

name: Elena
surname: Baralis
address: Corso Duca degli Abruzzi 24
ZIP: 20129
city: Torino
country: Italia

Correction

name: Elena
surname: Baralis
address: Corso Duca degli Abruzzi 24
ZIP: 10129
city: Torino
country: Italia

Adapted from Golfarelli, Rizzi, “Data warehouse, teoria e pratica della progettazione”, McGraw Hill 2006
Transformation

- Data conversion from operational format to data warehouse format
 - requires data integration
- A uniform operational data representation (reconciled schema) is needed
- Two steps
 - from operational sources to reconciled data in the staging area
 - conversion and normalization
 - matching
 - (possibly) significant data selection
 - from reconciled data to the data warehouse
 - surrogate keys generation
 - aggregation computation
Data warehouse loading

• Update propagation to the data warehouse
• Update order that preserves data integrity
 1. dimensions
 2. fact tables
 3. materialized views and indices
• Limited time window to perform updates
• Transactional properties are needed
 – reliability
 – atomicity
Dimension table loading

Staging area

ODS

ID1
attr 1
attr 2
......

ID2
attr 3
attr 4
......

ID3
attr 5
attr 6
......

ID2
attr 1
attr 3
attr 5
attr 6

ODS

Data mart

Dimension Table

Identify updates

Map identifiers and sur. keys

New/updated tuples for DT

Look-up table

New/updated tuples for DT

Sur. Key S
attr 1
attr 3
attr 5
attr 6

Load new/updated tuples in DT

Fact table loading

Materialized view loading

Materialized view loading