Classification fundamentals

Elena Baralis
Politecnico di Torino
Classification

- **Objectives**
 - prediction of a class label
 - definition of an interpretable model of a given phenomenon
Classification

• Approaches
 – decision trees
 – bayesian classification
 – classification rules
 – neural networks
 – k-nearest neighbours
 – SVM
Classification

- Requirements
 - accuracy
 - interpretability
 - scalability
 - noise and outlier management

- Training data
- Unclassified data
- Model
- Classified data
Classification

- **Applications**
 - detection of customer propensity to leave a company (churn or attrition)
 - fraud detection
 - classification of different pathology types
 - ...

Diagram:
- Training data
- Model
- Unclassified data
- Classified data
Classification: definition

- Given
 - a collection of class labels
 - a collection of data objects labelled with a class label
- Find a descriptive profile of each class, which will allow the assignment of unlabeled objects to the appropriate class
Definitions

- **Training set**
 - Collection of labeled data objects used to learn the classification model

- **Test set**
 - Collection of labeled data objects used to validate the classification model
Classification techniques

- Decision trees
- Classification rules
- Association rules
- Neural Networks
- Naïve Bayes and Bayesian Networks
- k-Nearest Neighbours (k-NN)
- Support Vector Machines (SVM)
- ...
Evaluation of classification techniques

- Accuracy
 - quality of the prediction
- Efficiency
 - model building time
 - classification time
- Scalability
 - training set size
 - attribute number
- Robustness
 - noise, missing data
- Interpretability
 - model interpretability
 - model compactness
Decision trees

Elena Baralis
Politecnico di Torino
Example of decision tree

Training Data

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Model: Decision Tree

- **Refund**
 - Yes
 - **MarSt**
 - Single, Divorced
 - **TaxInc**
 - < 80K
 - NO
 - > 80K
 - YES
 - **Married**
 - NO

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Another example of decision tree

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

There could be more than one tree that fits the same data!

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Apply Model to Test Data

Start from the root of tree.

Refund

- Yes: NO
- No:
 - MarSt:
 - Single, Divorced:
 - TaxInc:
 - < 80K: NO
 - > 80K: YES
 - Married: NO

Test Data

<table>
<thead>
<tr>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Married</td>
<td>80K</td>
<td>?</td>
</tr>
</tbody>
</table>

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Apply Model to Test Data

Test Data

<table>
<thead>
<tr>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Married</td>
<td>80K</td>
<td>?</td>
</tr>
</tbody>
</table>

Refund

- Yes
 - NO

- No
 - MarSt
 - Single, Divorced
 - TaxInc
 - < 80K
 - NO
 - > 80K
 - YES
 - Married
 - NO

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Apply Model to Test Data

Test Data

<table>
<thead>
<tr>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Married</td>
<td>80K</td>
<td>?</td>
</tr>
</tbody>
</table>

Refund

Single, Divorced

No

TaxInc

< 80K

NO

> 80K

YES

Married

NO

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Apply Model to Test Data

Test Data

Refund	Marital Status	Taxable Income	Cheat
No | Married | 80K | ?

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Apply Model to Test Data

Test Data

<table>
<thead>
<tr>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Married</td>
<td>$80K$</td>
<td>?</td>
</tr>
</tbody>
</table>

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Apply Model to Test Data

Test Data

<table>
<thead>
<tr>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Married</td>
<td>80K</td>
<td>?</td>
</tr>
</tbody>
</table>

Assign Cheat to “No”

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Decision tree induction

- Many algorithms to build a decision tree
 - Hunt’s Algorithm (one of the earliest)
 - CART
 - ID3, C4.5, C5.0
 - SLIQ, SPRINT

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
General structure of Hunt’s algorithm

Basic steps

- If D_t contains records that belong to more than one class
 - select the “best” attribute A on which to split D_t and label node t as A
 - split D_t into smaller subsets and recursively apply the procedure to each subset

- If D_t contains records that belong to the same class y_t
 - then t is a leaf node labeled as y_t

- If D_t is an empty set
 - then t is a leaf node labeled as the default (majority) class, y_d
Hunt’s algorithm

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Decision tree induction

- Adopts a greedy strategy
 - “Best” attribute for the split is selected locally at each step
 - not a global optimum

- Issues
 - Structure of test condition
 - Binary split versus multiway split
 - Selection of the best attribute for the split
 - Stopping condition for the algorithm
Structure of test condition

- Depends on attribute type
 - nominal
 - ordinal
 - continuous

- Depends on number of outgoing edges
 - 2-way split
 - multi-way split

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Splitting on nominal attributes

- **Multi-way split**
 - use as many partitions as distinct values

- **Binary split**
 - Divides values into two subsets
 - Need to find optimal partitioning

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Splitting on ordinal attributes

- Multi-way split
 - use as many partitions as distinct values
- Binary split
 - Divides values into two subsets
 - Need to find optimal partitioning

What about this split?

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Splitting on continuous attributes

- Different techniques
 - **Discretization** to form an ordinal categorical attribute
 - Static – discretize once at the beginning
 - Dynamic – discretize during tree induction
 Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering

- **Binary decision** \((A < v)\) or \((A \geq v)\)
 - consider all possible splits and find the best cut
 - more computationally intensive

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Splitting on continuous attributes

(i) Binary split

(ii) Multi-way split

Taxable Income > 80K?

Yes

No

< 10K
[10K,25K)
[25K,50K)
[50K,80K)

> 80K

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Before splitting: 10 records of class 0, 10 records of class 1

Which attribute (test condition) is the best?

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Selection of the best attribute

- Attributes with **homogeneous** class distribution are preferred
- Need a measure of node impurity

<table>
<thead>
<tr>
<th>C0: 5</th>
<th>C0: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1: 5</td>
<td>C1: 1</td>
</tr>
</tbody>
</table>

Non-homogeneous, high degree of impurity Homogeneous, low degree of impurity

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Measures of node impurity

- Many different measures available
 - Gini index
 - Entropy
 - Misclassification error
- Different algorithms rely on different measures

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
How to find the best attribute

Before Splitting:

<table>
<thead>
<tr>
<th></th>
<th>C0</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N00</td>
<td>Yes</td>
<td>M0</td>
</tr>
<tr>
<td>N01</td>
<td>No</td>
<td>M0</td>
</tr>
</tbody>
</table>

Gain = \(M0 - M12 \) vs \(M0 - M34 \)

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
GINI impurity measure

- Gini Index for a given node t

$$GINI(t) = 1 - \sum_j [p(j | t)]^2$$

$p(j | t)$ is the relative frequency of class j at node t

- Maximum ($1 - 1/n_c$) when records are equally distributed among all classes, implying higher impurity degree
- Minimum (0.0) when all records belong to one class, implying lower impurity degree

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Examples for computing GINI

The GINI index is a measure of statistical dispersion intended to represent income inequality within a nation or a social group. It is calculated using the formula:

\[GINI(t) = 1 - \sum_j [p(j | t)]^2 \]

where \(p(j | t) \) is the probability of class \(j \) given the attribute \(t \).

Example 1

<table>
<thead>
<tr>
<th>C1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>6</td>
</tr>
</tbody>
</table>

- \(P(C1) = 0/6 = 0 \)
- \(P(C2) = 6/6 = 1 \)
- Gini = 1 - \(P(C1)^2 - P(C2)^2 \) = 1 - 0 - 1 = 0

Example 2

<table>
<thead>
<tr>
<th>C1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>5</td>
</tr>
</tbody>
</table>

- \(P(C1) = 1/6 \)
- \(P(C2) = 5/6 \)
- Gini = 1 - \((1/6)^2 - (5/6)^2 \) = 0.278

Example 3

<table>
<thead>
<tr>
<th>C1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>4</td>
</tr>
</tbody>
</table>

- \(P(C1) = 2/6 \)
- \(P(C2) = 4/6 \)
- Gini = 1 - \((2/6)^2 - (4/6)^2 \) = 0.444

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Splitting based on GINI

- Used in CART, SLIQ, SPRINT
- When a node p is split into k partitions (children), the quality of the split is computed as

$$GI_{\text{split}} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where

- $n_i = \text{number of records at child } i$
- $n = \text{number of records at node } p$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Computing GINI index: Boolean attribute

- Splits into two partitions
 - larger and purer partitions are sought for

\[
\text{Gini}(N1) = 1 - (5/7)^2 - (2/7)^2 = 0.408 \\
\text{Gini}(N2) = 1 - (1/5)^2 - (4/5)^2 = 0.32
\]

\[
\begin{array}{c|c|c}
\text{Parent} & \text{N1} & \text{N2} \\
\hline
C1 & 5 & 1 \\
C2 & 2 & 4 \\
\end{array}
\]

\[
\text{Gini(split on B)} = 7/12 \times 0.408 + 5/12 \times 0.32 = 0.371
\]

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Computing GINI index: Categorical attribute

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

<table>
<thead>
<tr>
<th>CarType</th>
<th>Family</th>
<th>Sports</th>
<th>Luxury</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gini</td>
<td>0.393</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multi-way split

<table>
<thead>
<tr>
<th>CarType</th>
<th>{Sports, Luxury}</th>
<th>{Family}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Gini</td>
<td>0.400</td>
<td></td>
</tr>
</tbody>
</table>

Two-way split

- Two-way split (find best partition of values)

<table>
<thead>
<tr>
<th>CarType</th>
<th>{Sports}</th>
<th>{Family, Luxury}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Gini</td>
<td>0.419</td>
<td></td>
</tr>
</tbody>
</table>

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Computing GINI index: Continuous attribute

- Binary decision on one splitting value
 - Number of possible splitting values
 \(= \text{Number of distinct values}\)
- Each splitting value \(v\) has a count matrix
 - class counts in the two partitions
 - \(A < v\)
 - \(A \geq v\)

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Computing GINI index: Continuous attribute

- For each attribute
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Entropy impurity measure (INFO)

- Entropy at a given node t

\[
Entropy(t) = - \sum_j p(j | t) \log_2 p(j | t)
\]

$p(j | t)$ is the relative frequency of class j at node t

- Maximum ($\log n_c$) when records are equally distributed among all classes, implying higher impurity degree

- Minimum (0.0) when all records belong to one class, implying lower impurity degree

- Entropy based computations are similar to GINI index computations

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Examples for computing entropy

\[\text{Entropy}(t) = - \sum_j p(j \mid t) \log_2 p(j \mid t) \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0</td>
</tr>
<tr>
<td>C2</td>
<td>6</td>
</tr>
</tbody>
</table>

\[P(C1) = 0/6 = 0 \quad P(C2) = 6/6 = 1 \]

Entropy = \(- 0 \log 0 - 1 \log 1 = - 0 - 0 = 0\)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>5</td>
</tr>
</tbody>
</table>

\[P(C1) = 1/6 \quad P(C2) = 5/6 \]

Entropy = \(- (1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65\)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2</td>
</tr>
<tr>
<td>C2</td>
<td>4</td>
</tr>
</tbody>
</table>

\[P(C1) = 2/6 \quad P(C2) = 4/6 \]

Entropy = \(- (2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92\)

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Splitting Based on INFO

- Information Gain

\[GAIN_{\text{split}} = \text{Entropy}(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} \text{Entropy}(i) \right) \]

Parent Node, \(p \) is split into \(k \) partitions;
\(n_i \) is number of records in partition \(i \)

- Measures reduction in entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)

- Used in ID3 and C4.5

- Disadvantage: Tends to prefer splits yielding a large number of partitions, each small but pure

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Splitting Based on INFO

- **Gain Ratio**

\[
GainRATIO_{\text{split}} = \frac{GAIN_{\text{Split}}}{\text{SplitINFO}}
\]

\[
\text{SplitINFO} = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}
\]

- Parent Node, p is split into k partitions
- \(n_i\) is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO). Higher entropy partitioning (large number of small partitions) is penalized

- Used in C4.5

- Designed to overcome the disadvantage of Information Gain

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Classification error impurity measure

- Classification error at a node t

\[Error(t) = 1 - \max_i P(i \mid t) \]

- Measures misclassification error made by a node
 - Maximum ($1 - 1/n_c$) when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Examples for computing error

\[Error(t) = 1 - \max_i P(i | t) \]

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0</td>
<td>[P(C1) = 0/6 = 0 \quad P(C2) = 6/6 = 1]</td>
</tr>
<tr>
<td>C2</td>
<td>6</td>
<td>[Error = 1 - \max (0, 1) = 1 - 1 = 0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>[P(C1) = 1/6 \quad P(C2) = 5/6]</td>
</tr>
<tr>
<td>C2</td>
<td>5</td>
<td>[Error = 1 - \max (1/6, 5/6) = 1 - 5/6 = 1/6]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2</td>
<td>[P(C1) = 2/6 \quad P(C2) = 4/6]</td>
</tr>
<tr>
<td>C2</td>
<td>4</td>
<td>[Error = 1 - \max (2/6, 4/6) = 1 - 4/6 = 1/3]</td>
</tr>
</tbody>
</table>

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Comparison among splitting criteria

For a 2-class problem

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Stopping Criteria for Tree Induction

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when all the records have similar attribute values
- Early termination
 - Pre-pruning
 - Post-pruning

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Overfitting due to Noise

Decision boundary is distorted by noise point

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
How to address overfitting

- **Pre-Pruning (Early Stopping Rule)**
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using \(\chi^2 \) test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain)

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
How to address overfitting

- **Post-pruning**
 - Grow decision tree to its entirety
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node.
 - Class label of leaf node is determined from majority class of instances in the sub-tree

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Data fragmentation

- Number of instances gets smaller as you traverse down the tree

- Number of instances at the leaf nodes could be too small to make any statistically significant decision

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Handling missing attribute values

- Missing values affect decision tree construction in three different ways
 - Affect how impurity measures are computed
 - Affect how to distribute instance with missing value to child nodes
 - Affect how a test instance with missing value is classified

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Other issues

- Data Fragmentation
- Search Strategy
- Expressiveness
- Tree Replication
Search strategy

- Finding an optimal decision tree is NP-hard

- The algorithm presented so far uses a greedy, top-down, recursive partitioning strategy to induce a reasonable solution

- Other strategies?
 - Bottom-up
 - Bi-directional

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: parity function:
 - Class = 1 if there is an even number of Boolean attributes with truth value = True
 - Class = 0 if there is an odd number of Boolean attributes with truth value = True
 - For accurate modeling, must have a complete tree

- Not expressive enough for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
• Border line between two neighboring regions of different classes is known as decision boundary

• Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Oblique decision trees

- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Decision Tree Based Classification

- Advantages
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets

- Disadvantages
 - Accuracy may be affected by missing data

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Rule-based classification

Elena Baralis

Politecnico di Torino
Rule-based classifier

- Classify records by using a collection of “if...then...” rules

- Rule: \((\text{Condition}) \rightarrow y\)
 - where
 - \(\text{Condition}\) is a conjunction of attributes
 - \(y\) is the class label
 - \(\text{LHS}\): rule antecedent or condition
 - \(\text{RHS}\): rule consequent

- Examples of classification rules
 - \((\text{Blood Type}=\text{Warm}) \wedge (\text{Lay Eggs}=\text{Yes}) \rightarrow \text{Birds}\)
 - \((\text{Taxable Income} < 50\text{K}) \wedge (\text{Refund}=\text{Yes}) \rightarrow \text{Cheat}=\text{No}\)

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Rule-based Classifier (Example)

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>python</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>reptiles</td>
</tr>
<tr>
<td>salmon</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>fishes</td>
</tr>
<tr>
<td>whale</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>frog</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>amphibians</td>
</tr>
<tr>
<td>komodo</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>reptiles</td>
</tr>
<tr>
<td>bat</td>
<td>warm</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>pigeon</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>birds</td>
</tr>
<tr>
<td>cat</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>leopard shark</td>
<td>cold</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>fishes</td>
</tr>
<tr>
<td>turtle</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>reptiles</td>
</tr>
<tr>
<td>penguin</td>
<td>warm</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>birds</td>
</tr>
<tr>
<td>porcupine</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>eel</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>fishes</td>
</tr>
<tr>
<td>salamander</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>amphibians</td>
</tr>
<tr>
<td>gila monster</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>reptiles</td>
</tr>
<tr>
<td>platypus</td>
<td>warm</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>owl</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>birds</td>
</tr>
<tr>
<td>dolphin</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>eagle</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>birds</td>
</tr>
</tbody>
</table>

R1: (Give Birth = no) ∧ (Can Fly = yes) → Birds
R2: (Give Birth = no) ∧ (Live in Water = yes) → Fishes
R3: (Give Birth = yes) ∧ (Blood Type = warm) → Mammals
R4: (Give Birth = no) ∧ (Can Fly = no) → Reptiles
R5: (Live in Water = sometimes) → Amphibians

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Rule-based classification

- A rule \(r \) covers an instance \(\mathbf{x} \) if the attributes of the instance satisfy the condition of the rule.

 R1: (Give Birth = no) \(\land \) (Can Fly = yes) \(\rightarrow \) Birds
 R2: (Give Birth = no) \(\land \) (Live in Water = yes) \(\rightarrow \) Fishes
 R3: (Give Birth = yes) \(\land \) (Blood Type = warm) \(\rightarrow \) Mammals
 R4: (Give Birth = no) \(\land \) (Can Fly = no) \(\rightarrow \) Reptiles
 R5: (Live in Water = sometimes) \(\rightarrow \) Amphibians

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>hawk</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>?</td>
</tr>
<tr>
<td>grizzly bear</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>?</td>
</tr>
</tbody>
</table>

Rule R1 covers a hawk => Bird
Rule R3 covers the grizzly bear => Mammal

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Rule-based classification

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes
R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
R5: (Live in Water = sometimes) \rightarrow Amphibians

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>lemur</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>?</td>
</tr>
<tr>
<td>turtle</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>?</td>
</tr>
<tr>
<td>dogfish shark</td>
<td>cold</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>?</td>
</tr>
</tbody>
</table>

A lemur triggers (only) rule R3, so it is classified as a mammal
A turtle triggers both R4 and R5
A dogfish shark triggers none of the rules
Characteristics of rules

- **Mutually exclusive** rules
 - Two rule conditions can’t be true at the same time
 - Every record is covered by at most one rule

- **Exhaustive** rules
 - Classifier rules account for every possible combination of attribute values
 - Each record is covered by at least one rule
From decision trees to rules

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single, Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single, Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive
Rule set contains as much information as the tree
Rules can be simplified

Initial Rule: \((\text{Refund}=\text{No}) \land (\text{Status}=\text{Married}) \rightarrow \text{No}\)

Simplified Rule: \((\text{Status}=\text{Married}) \rightarrow \text{No}\)

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Effect of rule simplification

- Rules are no longer mutually exclusive
 - A record may trigger more than one rule
 - Solution?
 - Ordered rule set
 - Unordered rule set – use voting schemes

- Rules are no longer exhaustive
 - A record may not trigger any rules
 - Solution?
 - Use a default class
Ordered rule set

- Rules are rank ordered according to their priority
 - An ordered rule set is known as a decision list
- When a test record is presented to the classifier
 - It is assigned to the class label of the highest ranked rule it has triggered
 - If none of the rules fired, it is assigned to the default class

R1: (Give Birth = no) \(\wedge\) (Can Fly = yes) \(\rightarrow\) Birds
R2: (Give Birth = no) \(\wedge\) (Live in Water = yes) \(\rightarrow\) Fishes
R3: (Give Birth = yes) \(\wedge\) (Blood Type = warm) \(\rightarrow\) Mammals
R4: (Give Birth = no) \(\wedge\) (Can Fly = no) \(\rightarrow\) Reptiles
R5: (Live in Water = sometimes) \(\rightarrow\) Amphibians

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>turtle</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>?</td>
</tr>
</tbody>
</table>

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Building classification rules

- Direct Method
 - Extract rules directly from data
 - e.g.: RIPPER, CN2, Holte’s 1R

- Indirect Method
 - Extract rules from other classification models (e.g. decision trees, neural networks, etc).
 - e.g: C4.5rules

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Advantages of rule-based classifiers

- As highly expressive as decision trees
- Easy to interpret
- Easy to generate
- Can classify new instances rapidly
- Performance comparable to decision trees

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Associative classification

Elena Baralis
Politecnico di Torino
Associative classification

- The classification model is defined by means of association rules
 \[(\text{Condition}) \rightarrow y\]
 - rule body is an itemset

- Model generation
 - Rule selection & sorting
 - based on support, confidence and correlation thresholds
 - Rule pruning
 - Database coverage: the training set is covered by selecting topmost rules according to previous sort
Associative classification

- **Strong points**
 - interpretable model
 - higher accuracy than decision trees
 - correlation among attributes is considered
 - efficient classification
 - unaffected by missing data
 - good scalability in the training set size

- **Weak points**
 - rule generation may be slow
 - it depends on support threshold
 - reduced scalability in the number of attributes
 - rule generation may become unfeasible
Neural networks

Elena Baralis
Politecnico di Torino
Neural networks

- Inspired to the structure of the human brain
 - Neurons as elaboration units
 - Synapses as connection network
Structure of a neural network

Output vector

Output nodes

Hidden nodes

Input nodes

Input vector: x_i

From: Han, Kamber, “Data mining; Concepts and Techniques”, Morgan Kaufmann 2006
Structure of a neuron

Input vector x

Weight vector w

Weighted sum

Activation function

From: Han, Kamber, “Data mining; Concepts and Techniques”, Morgan Kaufmann 2006
Construction of the neural network

- For each node, definition of
 - set of weights
 - offset value
 providing the highest accuracy on the training data
- Iterative approach on training data instances
Construction of the neural network

- **Base algorithm**
 - Initially assign random values to weights and offsets
 - Process instances in the training set one at a time
 - For each neuron, compute the result when applying weights, offset and activation function for the instance
 - Forward propagation until the output is computed
 - Compare the computed output with the expected output, and evaluate error
 - Backpropagation of the error, by updating weights and offset for each neuron
 - The process ends when
 - % of accuracy above a given threshold
 - % of parameter variation (error) below a given threshold
 - The maximum number of epochs is reached
Neural networks

- **Strong points**
 - High accuracy
 - Robust to noise and outliers
 - Supports both discrete and continuous output
 - Efficient during classification

- **Weak points**
 - Long training time
 - weakly scalable in training data size
 - complex configuration
 - Not interpretable model
 - application domain knowledge cannot be exploited in the model
Bayesian Classification

Elena Baralis
Politecnico di Torino
Bayes theorem

- Let C and X be random variables
 \[P(C,X) = P(C|X) \cdot P(X) \]
 \[P(C,X) = P(X|C) \cdot P(C) \]
- Hence
 \[P(C|X) \cdot P(X) = P(X|C) \cdot P(C) \]
- and also
 \[P(C|X) = \frac{P(X|C) \cdot P(C)}{P(X)} \]
Bayesian classification

- Let the class attribute and all data attributes be random variables
 - C = any class label
 - X = \(<x_1, \ldots, x_k>\) record to be classified

Bayesian classification

- compute \(P(C|X)\) for all classes
 - probability that record X belongs to C
 - assign X to the class with \textit{maximal} \(P(C|X)\)

Applying Bayes theorem

\[
P(C|X) = \frac{P(X|C) \cdot P(C)}{P(X)}
\]

- \(P(X)\) constant for all C, disregarded for maximum computation
- \(P(C)\) a priori probability of C
 \[
P(C) = \frac{N_c}{N}
\]
Bayesian classification

- How to estimate $P(X|C)$, i.e. $P(x_1,\ldots,x_k|C)$?

- Naïve hypothesis

 $$P(x_1,\ldots,x_k|C) = P(x_1|C) \cdot P(x_2|C) \cdots P(x_k|C)$$

 - *statistical independence* of attributes x_1,\ldots,x_k
 - not always true
 - model quality may be affected

- Computing $P(x_k|C)$

 - for discrete attributes
 $$P(x_k|C) = \frac{|x_{kC}|}{N_c}$$
 - where $|x_{kC}|$ is number of instances having value x_k for attribute k and belonging to class C

 - for continuous attributes, use probability distribution

- Bayesian networks

 - allow specifying a subset of dependencies among attributes
Bayesian classification: Example

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>N</td>
</tr>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>true</td>
<td>N</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>N</td>
</tr>
<tr>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>P</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>N</td>
</tr>
<tr>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>true</td>
<td>P</td>
</tr>
<tr>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>P</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>false</td>
<td>P</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>N</td>
</tr>
</tbody>
</table>

From: Han, Kamber, “Data mining; Concepts and Techniques”, Morgan Kaufmann 2006
Bayesian classification: Example

| outlook | P(sunny|p) = 2/9 | P(sunny|n) = 3/5 |
|---------------|---------------|----------------|
| | P(overcast|p) = 4/9 | P(overcast|n) = 0 |
| | P(rain|p) = 3/9 | P(rain|n) = 2/5 |
| temperature | P(hot|p) = 2/9 | P(hot|n) = 2/5 |
| | P(mild|p) = 4/9 | P(mild|n) = 2/5 |
| | P(cool|p) = 3/9 | P(cool|n) = 1/5 |
| humidity | P(high|p) = 3/9 | P(high|n) = 4/5 |
| | P(normal|p) = 6/9 | P(normal|n) = 2/5 |
| windy | P(true|p) = 3/9 | P(true|n) = 3/5 |
| | P(false|p) = 6/9 | P(false|n) = 2/5 |

P(p) = 9/14

P(n) = 5/14

From: Han, Kamber, “Data mining; Concepts and Techniques”, Morgan Kaufmann 2006
Bayesian classification: Example

- Data to be labeled
 \[X = \text{<rain, hot, high, false>} \]

- For class p
 \[
P(X|p) \cdot P(p) = \]
 \[
 = P(\text{rain}|p) \cdot P(\text{hot}|p) \cdot P(\text{high}|p) \cdot P(\text{false}|p) \cdot P(p)\]
 \[
 = \frac{3}{9} \cdot \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{6}{9} \cdot \frac{9}{14} = 0.010582
 \]

- For class n
 \[
P(X|n) \cdot P(n) = \]
 \[
 = P(\text{rain}|n) \cdot P(\text{hot}|n) \cdot P(\text{high}|n) \cdot P(\text{false}|n) \cdot P(n)\]
 \[
 = \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{4}{5} \cdot \frac{2}{5} \cdot \frac{5}{14} = 0.018286
 \]

From: Han, Kamber, “Data mining; Concepts and Techniques”, Morgan Kaufmann 2006
Support Vector Machines

Elena Baralis
Politecnico di Torino
- Find a linear hyperplane (decision boundary) that will separate the data

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Support Vector Machines

- One Possible Solution

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Support Vector Machines

- Another possible solution

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Support Vector Machines

- Other possible solutions

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Which one is better? B1 or B2?
How do you define better?
Support Vector Machines

- Find hyperplane *maximizes* the margin => B1 is better than B2
Nonlinear Support Vector Machines

What if decision boundary is not linear?

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Nonlinear Support Vector Machines

- Transform data into higher dimensional space

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
K-Nearest Neighbor

Elena Baralis

Politecnico di Torino
Instance-Based Classifiers

Set of Stored Cases

<table>
<thead>
<tr>
<th>Atr1</th>
<th>..........</th>
<th>AtrN</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

- Store the training records
- Use training records to predict the class label of unseen cases

![Unseen Case Image](image_url)

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Instance Based Classifiers

Examples

- Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

- Nearest neighbor
 - Uses k “closest” points (nearest neighbors) for performing classification

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Nearest-Neighbor Classifiers

- Requires
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve

- To classify an unknown record
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Definition of Nearest Neighbor

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
1 nearest-neighbor

Voronoi Diagram

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Nearest Neighbor Classification

- Compute distance between two points
 - Euclidean distance

 \[d(p, q) = \sqrt{\sum_{i}(p_i - q_i)^2} \]

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the \(k\)-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, \(w = 1/d^2\)

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Nearest Neighbor Classification

Choosing the value of k:

- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Nearest Neighbor Classification

- Scaling issues
 - Attribute domain should be normalized to prevent distance measures from being dominated by one of the attributes
 - Example: height [1.5m to 2.0m] vs. income [$10K to $1M]

- Problem with distance measures
 - High dimensional data
 - curse of dimensionality
Model evaluation

Elena Baralis
Politecnico di Torino
Model evaluation

- Methods for performance evaluation
 - Partitioning techniques for training and test sets
- Metrics for performance evaluation
 - Accuracy, other measures
- Techniques for model comparison
 - ROC curve
Methods for performance evaluation

- **Objective**
 - reliable estimate of performance
- **Performance of a model may depend on other factors besides the learning algorithm**
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Learning curve shows how accuracy changes with varying sample size.

Requires a sampling schedule for creating learning curve:

- Arithmetic sampling (Langley, et al)
- Geometric sampling (Provost et al)

Effect of small sample size:
- Bias in the estimate
- Variance of estimate

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Methods of estimation

- Partitioning labeled data in
 - training set for model building
 - test set for model evaluation
- Several partitioning techniques
 - holdout
 - cross validation
- Stratified sampling to generate partitions
 - without replacement
- Bootstrap
 - Sampling with replacement
Holdout

- Fixed partitioning
 - reserve 2/3 for training and 1/3 for testing
- Appropriate for large datasets
 - may be repeated several times
 - repeated holdout
Cross validation

- Cross validation
 - partition data into k disjoint subsets (i.e., folds)
 - k-fold: train on $k-1$ partitions, test on the remaining one
 - repeat for all folds
 - reliable accuracy estimation, not appropriate for very large datasets

- Leave-one-out
 - cross validation for $k=n$
 - only appropriate for very small datasets
Metrics for model evaluation

- Evaluate the predictive accuracy of a model
- Confusion matrix
 - binary classifier

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>Class=Yes</td>
<td>a</td>
</tr>
<tr>
<td>Class=Yes</td>
<td>Class=No</td>
<td>b</td>
</tr>
<tr>
<td>Class=No</td>
<td>Class=Yes</td>
<td>c</td>
</tr>
<tr>
<td>Class=No</td>
<td>Class=No</td>
<td>d</td>
</tr>
</tbody>
</table>

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Accuracy

- Most widely-used metric for model evaluation

\[
\text{Accuracy} = \frac{\text{Number of correctly classified objects}}{\text{Number of classified objects}}
\]

- Not always a reliable metric
Accuracy

- For a binary classifier

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
<th>Class=Yes</th>
<th>Class=No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>a (TP)</td>
<td>b (FN)</td>
<td></td>
</tr>
<tr>
<td>Class=No</td>
<td>c (FP)</td>
<td>d (TN)</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{Accuracy} = \frac{a + d}{a + b + c + d} = \frac{TP + TN}{TP + TN + FP + FN}
\]

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Limitations of accuracy

- Consider a binary problem
 - Cardinality of Class 0 = 9900
 - Cardinality of Class 1 = 100

- Model

\[() \rightarrow \text{class 0} \]

- Model predicts everything to be class 0
 - accuracy is \(\frac{9900}{10000} = 99.0\% \)

- Accuracy is misleading because the model does not detect any class 1 object
Limitations of accuracy

- Classes may have different importance
 - Misclassification of objects of a given class is more important
 - e.g., ill patients erroneously assigned to the healthy patients class

- Accuracy is not appropriate for
 - unbalanced class label distribution
 - different class relevance
Class specific measures

- Evaluate separately for each class C

Recall (r) = \(\frac{\text{Number of objects correctly assigned to } C}{\text{Number of objects belonging to } C} \)

Precision (p) = \(\frac{\text{Number of objects correctly assigned to } C}{\text{Number of objects assigned to } C} \)

- Maximize

\[F - \text{measure (F)} = \frac{2rp}{r + p} \]
Class specific measures

For a binary classification problem on the confusion matrix, for the positive class

\[
\text{Precision (p)} = \frac{a}{a + c}
\]

\[
\text{Recall (r)} = \frac{a}{a + b}
\]

\[
\text{F - measure (F)} = \frac{2rp}{r + p} = \frac{2a}{2a + b + c}
\]

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - characterizes the trade-off between positive hits and false alarms
- ROC curve plots
 - TPR, True Positive Rate (on the y-axis)
 \[TPR = \frac{TP}{TP + FN} \]
 - against
 - FPR, False Positive Rate (on the x-axis)
 \[FPR = \frac{FP}{FP + TN} \]
ROC curve

(FPR, TPR)

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (0,1): ideal

- Diagonal line
 - Random guessing
 - Below diagonal line
 - prediction is opposite of the true class

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
How to build a ROC curve

| Instance | P(+|A) | True Class |
|----------|-------|------------|
| 1 | 0.95 | + |
| 2 | 0.93 | + |
| 3 | 0.87 | - |
| 4 | 0.85 | - |
| 5 | 0.85 | - |
| 6 | 0.85 | + |
| 7 | 0.76 | - |
| 8 | 0.53 | + |
| 9 | 0.43 | - |
| 10 | 0.25 | + |

- Use classifier that produces posterior probability for each test instance $P(+|A)$
- Sort the instances according to $P(+|A)$ in decreasing order
- Apply threshold at each unique value of $P(+|A)$
- Count the number of TP, FP, TN, FN at each threshold
 - TP rate
 $$TPR = \frac{TP}{TP+FN}$$
 - FP rate
 $$FPR = \frac{FP}{FP+TN}$$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
How to build a ROC curve

<table>
<thead>
<tr>
<th>Class</th>
<th>+</th>
<th>-</th>
<th>+</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>+</th>
<th>-</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(+</td>
<td>A)</td>
<td>0.25</td>
<td>0.43</td>
<td>0.53</td>
<td>0.76</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.87</td>
<td>0.93</td>
</tr>
<tr>
<td>TP</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>FP</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TN</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>FN</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>TPR</td>
<td>1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>FPR</td>
<td>1</td>
<td>1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
Using ROC for Model Comparison

- No model consistently outperforms the other
 - M_1 is better for small FPR
 - M_2 is better for large FPR
- Area under ROC curve
 - Ideal
 - Area = 1.0
 - Random guess
 - Area = 0.5

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006