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What IS Cluster Analysis?

A Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter -cluster
Intra -cluster distances are
distances are maximized
minimized ®0g
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A Understanding

A

Group related documents
for browsing, group genes
and proteins that have
similar functionality, or
group stocks with similar
price fluctuations

A Summarization

A

Reduce the size of large
data sets

¢+ Applications of Cluster Analysis
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Natl-SemiconducDOWN,OractDOWN,SGFDOWN,
SunDOWN
Apple-Comp-DOWN,AutodeskDOWN,DEGDOWN,
ADV -Micro-Device DOWN,AndrewCorpDOWN,
ComputerAssocDOWN, Circuit-City-DOWN,
CompagDOWN, EMG-Corp-DOWN, GenlnstDOWN,
MotorolaDOWN,Microsoft DOWN, ScientificAtl-DOWN

FannieMae-DOWN,FedHomeLoanDOWN,
MBNA -CorpDOWN,MorganStanleyDOWN

BakerHughesUP,Dressetnds-UP,HalliburtorHLD-UP,
LouisianalLand-UP,PhillipsPetrcUP,UnocalUP,
SchlumbergetJP

Discovered Clusters Industry Group
Applied-Matl-DOWN,BayNetworkDown,3COM-DOWN,
1 CabletroaSysDOWN,CISCGDOWN,HP-DOWN,
DSG-CommDOWN,INTEL-DOWN,LSI-Logic-DOWN,
Micron-TechDOWN, Texaslnst-Down, Tellabsinc-Down, TeChnO|09leOWN

Technolgy2-DOWN

FinanciatiDOWN

Oil-UrP

Clustering precipitation in
Australia
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Types of Clusterings

A A clustering Is a set of clusters

A Important distinction between
hierarchical and partitional sets of

clusters

A Partitional Clustering

A A division data objects into non-overlapping subsets
(clusters) such that each data object is in exactly

one subset

A Hierarchical clustering
A A set of nested clusters organized as a hierarchical
tree
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Original Points A Partitional Clustering
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Hierarchical Clustering

pl
o
pl p2 p3p4
Traditional Hierarchical Clustering Traditional Dendrogram
pl p2  p3p4
Non-traditional Hierarchical Clustering Non-traditional Dendrogram
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i4: Other Distinctions Between Sets of Clusters
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A EXxclusive versus nonexclusive

A In non-exclusive clustering, points may belong to multiple
clusters.

A Fuzzy versus nonfuzzy

A In fuzzy clustering, a point belongs to every cluster with some
weight between 0 and 1

A Weights must sumto 1
A Probabilistic clustering has similar characteristics

A Partial versus complete

A In some cases, we only want to cluster some of the data

A Heterogeneous versus homogeneous

A Cluster of widely different sizes, shapes, and densities
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& Types of Clusters
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Well-separated clusters
Center-based clusters

Contiguous clusters

Density-based clusters

Property or Conceptual

Described by an Objective Function
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(i Types of Clusters: Well Separated

A Well-Separated Clusters:

A A cluster is a set of points such that any point in a cluster is
closer (or more similar) to every other point in the cluster than
to any point not in the cluster.

3 well-separated clusters
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Types of Clusters: CenterBased

A Center-based

A A cluster is a set of objects such that an object in a cluster is
closer (more similar) to the n:
center of any other cluster

A The center of a cluster is often a centroid, the average of all

the points in the cluster, or a medoid, the most
Arepresentativeo point of a cl

4 center-based clusters
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Types of Clusters: Contiguity-Based

A Contiguous Cluster (Nearest neighbor or
Transitive)

A A cluster is a set of points such that a point in a cluster is
closer (or more similar) to one or more other points in the
cluster than to any point not in the cluster.

8 contiguous clusters
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A Density-based

A A cluster is a dense region of points, which is separated by
low-density regions, from other regions of high density.

A Used when the clusters are irregular or intertwined, and when

noise and outliers are present.

Types of Clusters: Density-Based

6 density-based clusters
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Types of Clusters: Conceptual Clusters

A Shared Property or Conceptual Clusters

A Finds clusters that share some common property or represent
a particular concept.

2 Overlapping Circles
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=4¢ Clustering Algorithms

A K-means and its variants

A Hierarchical clustering

A Density-based clustering
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A Partitional clustering approach

A Each cluster is associated with a (center point)

A Each point is assigned to the cluster with the closest
centroid

A Number of clusters, K, must be specified

A The basic algorithm is very simple

1: Select K points as the initial centroids.

2: repeat

3:  Form K clusters by assigning all points to the closest centroid.

4:  Recompute the centroid of each cluster.

5: until The centroids don’t change
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=4t K-means Clusteringi Details

A Initial centroids are often chosen randomly.
A Clusters produced vary from one run to another.

A The centroid is (typically) the mean of the points in the
cluster.

A O0Cl osenessO6 Ii's measured by EL
similarity, correlation, etc.

A K-means will converge for common similarity measures
mentioned above.

A Most of the convergence happens in the first few
iterations.
A Often the stopping condition I s ¢

points change clusters?o
A ComplexityisO(n*K*1*d)

A n = number of points, K = number of clusters,
| = number of iterations, d = number of attributes

DG 1

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




2.5- 4% ¢

Original Points

1.5F 0%e 0 %0 A

*
> * ¢ °
1 S
° S
05} .o
se " ol
° u
0 & il
® n
]
| I |
2 15 -1 05 0 05 15 2
X
3r 3 *
. *»
25 25 X A
‘e 00N
2t 2 ¢
* o &
AL L3™
15F 15F ** o’o
> N > *
1} 1k .
05 e ¢ ° .
5F 05F
% : % e
'y u
° w2l ° u
o- ) o ok, 0 :’9 o ok,
[ ] " ® u
] ]
r ry - - r r - r r i . = r r
2 15 -1 05 0 05 15 2 2 15 1 05 0 05 1 15 2

Optimal Clustering

Sub-optimal Clustering

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

18



Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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(=4} Evaluating K-means Clusters

A Most common measure is Sum of Squared Error (SSE)
A For each point, the error is the distance to the nearest cluster
A To get SSE, we square these errors and sum them.

K
SSE= 3 4 dist’(m, )
i=1 X C
A Xlis a data point in cluster Gand m,is the representative point for
cluster G
A can show that m;corresponds to the center (mean) of the cluster
A Given two clusters, we can choose the one with the smallest error
A One easy way to reduce SSE is to increase K, the number of clusters

A A good clustering with smaller K can have a lower SSE than a poor
clustering with higher K
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4} K-means parameter setting

A Elbow graph (Knee approach)
A Plotting the quality measure trend (e.g., SSE) against K

A Choosing the value of K
A the gain from adding a centroid is negligible
A The reduction of the quality measure is not interesting anymore

Medical records

Network traffic data
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10 Clusters Example
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with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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érting with some pairs of clusters having three initial centroids, while other have only one.
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10 Clusters Example
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.24 Solutions to Initial Centroids Problem
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A Multiple runs
A Helps, but probability is not on your side

A Sample and use hierarchical clustering to
determine initial centroids

A Select more than k initial centroids and then
select among these Initial centroids

A Select most widely separated
A Postprocessing
A Bisecting K-means
A Not as susceptible to Initialization issues

DHG 2
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Handllng Empty Clusters

A BaS|c Kcmeans algorithm can yield empty
clusters

A Several strategies
A Choose the point that contributes most to SSE

A Choose a point from the cluster with the highest
SSE

A If there are several empty clusters, the above can
be repeated several times.

D“B,\G | —— | 30
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A Pre-processing
A Normalize the data
A Eliminate outliers

A Postprocessing

= Pre-processing and Postprocessing

A Eliminate small clusters that may represent outliers

ASplit Ol oosed cluste
AMerge clusters that
SSE

r s, | . e
are ocl

A Can use these steps during the clustering process
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4} Bisecting Kmeans

A Bisecting K-means algorithm

A Variant of K-means that can produce a partitional or a
hierarchical clustering

Initialize the list of clusters to contain the cluster containing all points.
repeat
Select a cluster from the list of clusters
for i = 1 to number_of _iterations do
Bisect the selected cluster using basic K-means
end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

until Until the list of clusters contains K clusters

DG
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Bisecting K-means Example

lteration 10
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X
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: Limitations of K-means

‘ \;'fg‘%

\ 3
<

A K—means has problems when clusters are of
differing
A Sizes
A Densities
A Non-globular shapes

A K-means has problems when the data
contains outliers.
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Original Points

Limitations of K-means: Differing Sizes

K-means (3 Clusters)
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Original Points

Limitations of K-means: Differing Density
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K-means (3 Clusters)
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Limitations of K-means: Non-globular Shapes
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Original Points K-means (2 Clusters)
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K-means Clusters

One solution is to use many clusters.

Find parts of clusters, but need to put together.
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