B DataBase &

DH\AG DataMining

Group

Beyondrelationaldatabases

Daniele Apiletti

«NoSQ#k birth gﬁfySQ |

Aln 1998Carlo{ NXRlightwkight opensourcerelational
databaseahat did not exposethe standard SQinterface

Aln 2009Johanh & {1 I NFEL asefnf)@ganizesan eventto
discusgecentadvance®n nonrelationaldatabasesA
new, unigue, shorthashtagto promote the eventon
Twitter wasneeded #NoSQL

NoSQIlmainfeatures

schemaless
(notables implicitschema)
no joins

O

StudentlL Name Surname

Coursenumber Student

Coursenumber

Name
Name

Surname
Professor

horizontal
scalability

a
B
—

N

http://www.slideshare.net/vivekpariharl/mongodiscalabilityand-high-availabilitywith-replicaset

http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset

Comparison

Relationaldatabases Non-Relationaldatabases

Specialized storagsolutions, e.g, documentbased
key-value pairs, graph databases, columnar storage

Tablebased eachrecordis a structuredrow

Predefinedschemafor eachtable, changesallowed Schemaless schemafree, schema change is dynami
but usuallyblocking(expensivan distributedand live for each document, suitable for sesstructured
environment9 or un-structured data

Horizontallyscalable NoSQL databases are scaled by
increasing the databases servers in the pool of
resources to reduce the load

Verticallyscalablei.e.,typicallyscaledby increasing
the power of the hardware

UseSQL(Sructured Query Languagedf defining and Custom queryjanguagesfocused on collection of
manipulating the data, very powerful documents, graphs, and othepecialized data
structures

Comparison

Relationaldatabases Non-Relationaldatabases

Suitablefor complex queriesbased on datgoins No standardinterfaces to perform complex querieso
joins
Suitable forflat and structured data storage Suitable for complete.g.,hierarchica) data,similar to

JSON and XML

E>_<amplesMySql Oracle Sqlite Postgresand ExamplesMongoDB BigTableRedis Cassandra,
Microsoft SQL Server
Hbaseand CouchDB

Typenf NoSQldatabases

Key-Value Column-Family

Column 1 Column 2

key

key

key

AV A g\l
valie /
Ve &

Document

http://www.slideshare.net/Couchbase/webinanakingsenseof-nosgltapplyingnonrelationatdatabasegdo-businessneeds

http://www.slideshare.net/Couchbase/webinar-making-sense-of-nosql-applying-nonrelational-databases-to-business-needs

Keyvaluesdatabases

ASimplestNoSQIldata stores KeY'value
AMatch keyswith values key

ANo structure key
AGreatperformance key|
AEasilyscaled roy|

AVeryfast

AExamplesRedis Riak Memcached

Columnorienteddatabases

AStore data ircolumnarformat Column-Family
Ab | YSDahiel@ddY NR 6 m MABSVONR @H X NR g n T Column1 Column 2

A{ dzNJ/ | XHettif YRR s MRBRISE ¥ PP 6é@ SNR SC | _

AA column is a (possibomplex)attribute (Keyt) —> | [Vaiet | | Falie?

AKeyvalue pairs stored and retrieved on key ina (key2) —» || Valied | | Valued

parallel system (similar tmdexeg
ARowscan be constructed from column values
AColumn stores can produce row outptlfles)
ACompletely transparent to application

AExamples: Cassandkbase Hypertable
AmazonDynamoDB

Graphdatabases

ABasedon graphtheory
AMade up byertexand Edges

AUsedto store information about
networks

AGoodfit for severalreal world
applications

AExamplesNeo4J, Infinit&Graph
OrientDB

Documentdatabases

ADatabasestoresandretrievesdocuments Document
AKeys arenappedto documents

ADocumentsare selfdescribing
(attribute =value)

AHashierarchicaltree nesteddatastructures
(e.g.,maps lists, datetimez X 0

AHeterogeneousature ofdocuments
AExamplesMongoDB CouchDBRavenDB

anotableNoSQlexample

I [l
CouchDB
uster Of Unreliable

Commodity Hardware CouchDB

relax

CouchDmBriginalhome page

Documentoriented database Offersincremental
can bequeriedandindexedin replication with bi-
aMapReduce‘ashion directionalconflict
DB Reduce Rereduce d ete Ctl O n an d
W ﬂ m m resolution ~
. o 1 s1238% [291] §123456 5123436 ‘: :D ‘:
2 $123456 [24,1] - _
@ 5 §123456 [21,1]
3 $654321 [27 1} $654321 3 - 5654321 3
i 4 5654321 [26,1]
7 5654321 [18,1]
i 8 5987654 [25 1] _ 5987654 1 - 5987654 1
JSON / REST/HTTP
Providesa RESTful

JSON ARhan can be

[{"city": "Paris", "units": "C"}]

S
el =
Response
allowsHTTRequests Pl Lt

Written in Erlang arobust
functionalprogramminganguage
idealfor buildingconcurrent
distributed systems Erlangallows
for aflexibledesignthat is easily
scalableandreadilyextensible

Master

Slave Slave Slave

Slave

CouchDmBriginalhome page

Documentoriented database Offersincremental
can bequeriedandindexedin replicationwith bi-
aMapReduceashion directionalconflict
N - et detectionand
mnm nm nm resolution
. o 1 5123456 [29,1] $123456 5123456 ‘: :D =
2 $123456 [24,1] - _ :
@ 5 §123456 [21,1]
3 $654321 [27 1} 5654321 3 - 5654321 3
i 4 5654321 [26,1]
7 5654321 [18,1]
. 8 s987654 [25,1] L 987654 1 _', $987654 1
JSON / REST/HTTP
Providesa RESTful

JSON ARhan can be

[{"city": "Paris", "units": "C"}]

S
el =
Response
allowsHTTRequests Pl Lt

Written in Erlang arobust
functionalprogramminganguage
idealfor buildingconcurrent

distributed systems Erlangallows

for aflexibledesignthat is easily
scalableandreadilyextensible

Master

Slave Slave Slave

Slave

MapReduce

a scalabledistributed |
programmingmodel ‘ - _
to processBig Data S MNERREE2

MapReduce

A Publishedn 2004by Google

A J.Dean and &hemawaE dal LWSRdzOSY {AYLIX AFTASR 510l t NRC
gggg Symposium on Operating System Design and Implementation, San Francisco, CA, December,

A used to rewrite the production indexingvs?/st“erp with 24 MapReduce operations (in August 2004
alone, 3288TeraBytesead, 80k machin®kl e a dza SRavgecz2oa 2+ wmMnQ
A Distributed programmingmodel

A Ilgg)ceséarge data sets witiparallelalgorithmson aclusterof commonmachinese.g.,
S

A Greatd forparallel jobsrequiringpiecesof computationsto be executedon all data
records

A Move the computation (algorithm) to the data (remote node, PC, disk)

A Inspiredby themapand reducdunctionsusedin functional programming

A In functional code, the ou_tﬁut value of a function depends only on the arguments that are passed to the function, so
calling a functiorf twice with the same value for an argumenproduces the same resuifx) each time; thisisin
contrast to procedures depending on a local or global state, which may produce different results at different times
when called with the same arguments but a different program state.

MapReduceworkingprinciples

AConsists of two functions,Map and aReduce
AThe Reduce is optional

AMap function
AProcess each recordgcument) A INPUT
AReturn a list okey-valuepairs A OUTPUT

AReducefunction

Afor eachkey, reduces the list of itgalues returned by the map, to
' aaAay3It S¢éE Gt dzS

AReturned value can be a complex piece of data, e.g., a list, tuple,
etc.

Map

AMap functionsare calledonce foreachdocument
function(doc) {

emit(key,, value)); // key, = f,(doc); value={,(doc)
emit(key,, value,); // key, = f,(doc); valug = { ,(doc)
}

AThemapfunction can chooseto skipthe documentaltogetheror
emit one ormore key valuepairs

AMap function maynot dependon anyinformation outside the
document Thisindependencas what allowsCouchDRiewsto be
generatedincrementallyandin parallel

Map example

AExampledatabase, aollectionof docsdescribinguniversityexamrecords
Id: 1 Id: 2 Id: 3 Id: 4
Exam Database Exam Computerarchitectures | | Exam Computerarchitectures | | Exam Database
Student s123456 Student s123456 Student s654321 Student s654321
AYear 201516 AYear 201516 AYear 201516 AYear 201415
Date: 3101-2016 Date: 0307-2015 Date: 2601-2016 Date: 2607-2015
Mark=29 Mark=24 Mark=27 Mark=26
CFU=8 CFU=10 CFU=10 CFU=8
Id: 5 Id: 6 Id: 7 Id: 8

Exam Softwareengineering

Student s123456
AYear 201415
Date: 1402-2015
Mark=21

CFU=8

Exam Bioinformatics
Student s123456
AYear 201516

Date: 1809-2016
Mark=30

CFU=6

Exam Softwareengineering
Student s654321

AYear 201516

Date: 2806-2016

Mark=18

CFU=8

Exam Database
Student s987654
AYear 201415
Date: 2806-2015
Mark=25

CFU=8

AList ofexamsand correspondingnarks

Functioridoc){

Key

Map example(1)

emit(docexam docmark);

Value

Id: 2
Exam Computerarchitectures
Student s123456

Id: 3
Exam Computerarchitectures
Student s654321

Id: 4
Exam Database
Student s654321

AYear 201516 AYear 201516 AYear 201415
Date: 0307-2015 Date: 2601-2016 Date: 2607-2015
Mark=24 Mark=27 Mark=26
CFU=10 CFU=10 CFU=8

Id: 1 Id: 5

Exam Database Exam Softwareengineering
Student s123456 Student s123456
AYear 201516 AYear 201415
Date: 3301-2016 Date: 1402-2015
Mark=29 Mark=21

CFU=8 CFU=8

Id: 8 Id: 7 Id: 6

Exam Database
Student s987654
AYear 201415
Date: 2806-2015
Mark=25

CFU=8

Exam Softwareengineering
Student s654321

AYear 201516

Date: 2806-2016

Mark=18

CFU=8

Exam Bioinformatics
Student s123456
AYear 201516

Date: 1809-2016
Mark=30

CFU=6

Result

6

Key
Bioinformatics
Computerarchitectures

Computerarchitectures

Database

Database

Database
Software engineering

Software engineering

Value

30
24

27

29

26
25

21

18

AOrdered list of exams, academic year, and date, and select their mark

Functior{doc) {
key = [docexam docAYeat

value=docmark
emit(key, value);

Map example(2)

Id: 2

Exam Computerarchitectures

Student s123456

Id: 3
Exam Computerarchitectures
Student s654321

Id: 4
Exam Database
Student s654321

AYear 201516 AYear 201516 AYear 201415
Date: 0307-2015 Date: 2601-2016 Date: 2607-2015
Mark=24 Mark=27 Mark=26
CFU=10 CFU=10 CFU=8

Id: 1 Id: 5

Exam Database Exam Softwareengineering
Student s123456 Student s123456
AYear 201516 AYear 201415
Date: 3101-2016 Date: 1402-2015
Mark=29 Mark=21

CFU=8 CFU=8

Id: 8 Id: 7 Id: 6

Exam Database
Student s987654
AYear 201415
Date: 2806-2015
Mark=25

CFU=8

Exam Softwareengineering
Student s654321

AYear 201516

Date: 2806-2016

Mark=18

CFU=8

Exam Bioinformatics
Student s123456
AYear 201516

Date: 1809-2016
Mark=30

CFU=6

Result

6

2

Key
[Bioinformatics 201516]

[Computerarchitectures 201516]

[Computerarchitectures 201516]

[Database, 20145]
[Database, 20145]

[Database, 20136]
[Software engineering, 20115]

[Software engineering, 20156]

Value

30

24

27

26
25

29
21

18

Functior{doc) {
key =docstudent

Map example(3)

AOrderedlist of students with markand CFU foeachexam

value= [docmark, docCFU

emit(key, value);

Id: 2 Id: 3 Id: 4

Exam Computerarchitectures Exam Computerarchitectures Exam Database
Student s123456 Student s654321 Student s654321
AYear 201516 AYear 201516 AYear 201415
Date: 0307-2015 Date: 2601-2016 Date: 2607-2015
Mark=24 Mark=27 Mark=26
CFU=10 CFU=10 CFU=8

ld: 1 Id: 5

Exam Database Exam Softwareengineering
Student s123456 Student s123456
AYear 201516 AYear 201415
Date: 3101-2016 Date: 1402-2015
Mark=29 Mark=21

CFU=8 CFU=8

Id: 8 Id: 7 Id: 6

Exam Database
Student s987654
AYear 201415
Date: 2806-2015
Mark=25

CFU=8

Exam Softwareengineering
Student s654321

AYear 201516

Date: 2806-2016

Mark=18

CFU=8

Exam Bioinformatics
Student s123456
AYear 201516

Date: 1809-2016
Mark=30

CFU=6

Result

1 S123456

2 S123456

5 S123456

6 S123456
3 S654321

4 S654321

7 S654321

8 s987654

[29, 8]

[24, 10]

[21, 8]
[30, 6]
[27, 10]

[26, 8]
[18, 8]

[25, 8]

Reduce

ADocuments (keyalue pairs) emitted by the map function are
sorted by key

A some platforms (e.g. Hadoop) allow you to specifically defigleudfle phaseto
manage the distribution of map results to reducers spread over different nodes, thus
providing a finegrained control ovecommunication costs

AReducenputs are the map outputs: &ist of keyvalue documents
AEach execution of the reduce function retuimnse keyvalue document

AThe most simple S@quivalent operations performed by means of
reducers are<group by» aggregationsbut reducers are very flexible
functions that can execute eveaomplex operations

ARereduce reduce functions can be called on their own results in CouchDB

MapReducexample(1)

AM ap - List ofexamsand @1 Doc The reducdunctionreceives
Correspondingnark Student 123456 é key=Bioinformatics values=[30]
AYear 201516 X
= tior(d DAl oot A key=Databaseyalues=[29,26,25]
unc IOr(OC){ CFU=8 A X
emit(docexam docmark);
} Reduce
— BT
Bioinformatics Bioinformatics
AREduce' CompUte the 2 Computerarchitectures 24 Sericr
averageﬂarkfor eaChexam 3 Computerarchitectures 27 architectures 255
Functiortkey, value
S —r(suri\(alue ;{ 1 Database 29
N :Ien(valu es., 4 Database 26 Database 26.67
AVG = S/N: 8 Database 25
return AVG; 5 Software engineering 21 Sorae 105

} 7 Software engineering 18 engineering

MapReducexample2)

A Map - List ofexamsand
correspondingnark

Functior{doc){
emit(
[docexam, doc AYeat,
docmark
);

}

A Reduce Compute theaverage
markfor each
examandacademigyear

Functiortkey, value9{
S = sumfaluegy;
N =len(values;
AVG = S/N;
return AVG;

} Reducdas the sameasbefore

id: 1

Exam Database
Student s123456
AYear 201516
Date: 3101-2016
Mark=29

CFU=8

DOC

Bioinformatics 201516

Computerarchitectures 201516

Computerarchitectures 201516

Database, 20145
Database, 20145

Database, 20146
Software engineering, 20145

Software engineering, 20156

24

27

26
25

29

21

18

The reducdunctionreceives

A key=[Database, 20145], values=[26,25]
A key=[Database, 20146], values=[29]

A X

Reduce

O I

[Bioinformatics 201516]
[Computerarchitectures o5 5
201516] '
[Database, 20145] 25.5
[Database, 20136] 29

[Software engineering, 20145] 21

[Software engineering, 20156] 18

Rereducen CouchDB

A Averagemarkthe for eachexam(grouplevel=1) ¢ sameReduceasbefore

DB

ld: 1 Id: 8

Exam Database Exam Database
Student s123456 Student s987654
AYear201516 AYear 201415
Date: 3101-2016 Date: 2806-2015
Mark=29 Mark=25

CFU=8 CFU=8

Id: 6 Id: 4

Exam Bioinformatics Exam Database
Student s123456 Student s654321
AYear201516 AYear201415
Date: 1809-2016 Date: 2607-2015
Mark=30 Mark=26

CFU=6 CFU=8

Id: 5 Id: 7

Exam Software Exam Software
engineering engineering
Student s123456 Student s654321
AYear201415 AYear201516
Date: 1402-2015 Date: 2806-2016
Mark=21 Mark=18

CFU=8 CFU=8

Id: 3 Id: 2

Exam Computer Exam Computer
architectures architectures
Student s654321 Student s123456
AYear201516 AYear201516
Date: 2601-2016 Date: 0307-2015
Mark=27 Mark=24
CFU=10 CFU=10

Reduce

Rereduce

Bioinformatics 201516
5 Computerarchitectures
201516
3 Computerarchitectures
201516
4 Database, 2014015
3 Database, 20145
1 Database, 20136

5 Software engineering, 20145

7 Software engineering, 20156

24

27

26

25

29

[Bioinformatics 201516]

[Computerarchitectures

201516] 255
[Database, 20145] 25.5
[Database, 20136] 29

[Software engineering, 201#5] 21

[Software engineering, 20156] 18

Bioinformatics

Computerarchitectures 25.5
Database 27.25
Software engineering 19.5

MapReducexample(3a) e

Date: 3101-2016
Mark=29

AverageCFUweighted mark for eachstudent CFU=8

AMap

The reducdunctionreceives Reduce

A key=
A X

A key=

A values

AReduce

The reducdunctionresults
A key=
valuess
A X
A key=
A values

MapReducexample(3a)

AMap - Orderedlist of students with
markand CFU foeachexam

Functior{doc) {
key=docstudent
value= [docmark, docCFU
emit(key, value);

}
1
AReduce AverageCFUweighted 2
markfor eachstudent i
Functior{key, value9{
S = sum(K*Yfor X,Y invalues)); 6
N = sum([Y for X)Yin values]); 3
AVG = S/N; 4
return AVG; yey=s123456
} valuesT WOHMPIYOS OHNIMANOE

XI' HPS HNI AHmeEk X

YI' y3> mMn3I yACFX

8

The reducdunctionreceives
A key=S123456
valued WO HPIYyOE SHNIMANOZ
A X
A key=s987654values=[(25,8)]

Reduce

CEECT ECEE

S123456 [29, 8§]

S123456 [24, 10]

S123456 25.6
S123456 [21, 8]

S123456 [30, 6]
S654321 [27, 10]

S654321 [26, 8] S654321 23.9

6 pwa3ylo X[88, 8]

s987654 [25,8] $987654 25

MapReducexample(3b)

ACompute thenumberof examsfor eachstudent
ATechnologicabiew of datadistributionamongdifferent nodes

Reduce Rereduce
DB
B Id: 1Exam DatabaseStudent s123456
AYear 201516 Date: 3101-2016 Mark=29 CFU=8 S123456 [29, 1]
Id: 2Exam ComputerarchitecturesStudent s123456 L
- _< AYear 201516 Date: 0307-2015 Mark=24 CFU=10 S123456 [24, 1] S123456
Id: 5E Softw i ingStud 123456 B 8123456 4
: 5Exam SoftwareengineeringStudent s
AYear 201415 Date: 1402-2015 Mark=21 CFU=8 S123456 [21, 1]
Id: 6Exam BioinformaticsStudent s123456
i AYear 201516 Date: 1809-2016 Mark=30 CFU=6 S123456 [30, 1] S123456
B Id: 3Exam ComputerarchitecturesStudent s654321 I =
AYear 201516 Date: 2601-2016 Mark=27 CFU=10 S654321 [27, 1]
Id: 4Exam DatabaseStudent s654321
i | AYear201415 Date: 2607-2015 Mark=26 CFU=8 S654321 [26,1] — S654321 — S654321 3
Id: 7Exam SoftwareengineeringStudent s654321
AYear 201516 Date: 2806-2016 Mark=18 CFU=8 8654321 [181 1]
Id: 8Exam DatabaseStudent s987654
- { AYear 201415 Date: 2806-2015 Mark=25 CFU=8 3987654 [251 1] } 8987654 } 3987654 1

Views(indexe$s

ATheonlyway toquery CouchDBs to build aviewon the data
AAviewis producedby a MapReduce

AThepredefinedview for eachdatabasehas
Athe documentlD askey,
Athe whole documentasvalue
Ano Reduce

ACouchDRiewsare materializedasvaluessorted by key
Aallowsthe sameDB tohavemultiple primary indexes

AWhenwriting CouchDBnap functions your primarygoalis to build
anindexthat storesrelated data undernearbykeys

Replication

Samedata
In different places
(contentand schema)

Replication

ASamedata

Aportions of the whole dataset(chunkg

Ain different places
Alocaland/or remoteservers clusters, data centers

AGoals

ARedundancyelpssurvivingfailures(availability)
ABetter performance

AApproaches
AMaster-Slavereplication
AA-Synchronouseplication

MasterSlavaeplication

Readwrite operations

AMaster-Slave A

r
A A masterservertakesall the
writes, updates inserts

AOneor moreSqueservergtake all
the reads(they O I ywEie)
A Onlyread scalability

AThe masteisa singlepoint of
failure

ACouchDBu pports Slave Slave Slave Slave
Master-Masterreplication Y

Onlyreadoperations

Master

Synchronouseplication

A Beforecommittinga transaction the Masterwaits for (all) the Slavego commit
A Similarin conceptto the 2-PhaseCommitin relationaldatabases

A Performancekiller, inparticularfor replicationin the cloud

ATradeoff: wait for a subset oBlavego commit, e.g., themajority of them

\
./ Master Wait for all slaves

L (re@dy tocommit
new transaction

Replicate

Slave Slave Slave Slave

Asynchronouseplication

AThe Mastercommitslocally, it doesnot wait for any Slave

AEachSIaveindependentlyfetchesupdatesfrgm Master,whichmayfailX
AIF no Slaveasreplicated thené 2 dA@stRe datacommittedto the Master
A IF someSlavesavereplicatedand someK | @ Stye@yidu haveto reconcile
AFasterandunreliable

Master

Cancommitother
transactions

T

Replicate

Slave Slave Slave Slave

Distributeddatabases

Different autonomous
machinesworking
together to manage
the samedataset

Keyfeaturesof distributeddatabases

AThereare 3typicalproblemsin distributed databases

AConsistency
AAllthe distributed databasesrovidethe samedata to theapplication
AAvailability

A Databasdailures(e.g., mastenode) donot preventsurvivorsfrom
continuingto operate

APartition tolerance

AThesystemcontinuesto operatedespitearbitrary messagdoss
when connectivityfailurescause networlpartitions

CAPTheorem

ATheCAP theorem, also known as Brewer's theorem,
states that it |smp033|blefor a distributed systento
simultaneouslyprovideall three of the previous
guarantees

AThe theorem began asanjecturemade by
University of California in 1992000

A1TNYEYR2 C2E YR 9NAO . NBoSNE a4l |
¢2f SNyl {2adSvya¢é¢s tNRO® TUK 22N]J ,
Operating System3$H40t0399), IEEE CS, 1999, pg.-178. Enforced consistency

Aln 2002 a formal proof was published,
establishing It as theorem Eaiton

A{SGK DAfOSNI IyR blyoOeé [@yOK>X a.NBgSNHa Oy 2SOl dzNB

the feasibility of consistent, available, partitidolerant R .
S0 aSNWBAOSat¢xz !/ a {LD!'/ ¢ bSEaz =+2f¢ szS 00 NHUZXZ LIFP pwm
't 0g S

Aln 2012, afollondzLI 6 & 9 NRAR O . NB S SN | &
8SINE fFGSNY 126 (GKS bNsztSab KI @S

A IEEE Explore, Volume 45, Issue 2 (2012), pg923

(Consensus protocols
for HA consistency

Consistency

|. y‘ D)
R Eventual consistency
haadzS H OH

http://quide.couchdb.org/editions/1/en/consistency.html#figure/1

http://guide.couchdb.org/editions/1/en/consistency.html#figure/1

CAPTheorem

AThe easiest way to understand CAP is to thirtkvof
nodeson opposite sides of partition.

AAllowing at least one node to update state will cause
the nodes to becomeconsistent thus forfeiting C.

AlIf the choice is to preserve consistency, one side of
the partition must act as if it isnavailable thus

fO I’feltlng A Enfarced consistency
AOnly when no networlpartition exists, is it possible
to preserve both consistency and availability, thereby
forfeiting P.
AThe general belief is that for wickrea systems,

designers cannot forfeit RAnd therefore have a
difficult choice between C and A.

(Consensus protocols
for HA consistency

Availability

tolerence

Eventual consistency

http://www.infog.com/articles/captwelve-yearslater-how-the-ruleshavechanged

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

CAPTheorem

Relational (Comparison) Avallablllty
Key-value
Column-oriented/ Tabular
Document oriented

Each client can always read and write

CA AP
RDBMSs Aster Data Dynamo Cassandra
(MySQL, Greenplum Voldemort SimpleDB

Postgres, Vertica
etc)

Tokyo Cabinet CouchDB

KAI Riak

Partltion

onsistency

CcP Tolerance
All clients alway; BigTable MongoDB Berkeley DB The system works well
have the same view Hypertable Terrastore MemcacheDE despite physical network
of the data HBase Scalaris Redis partitions

http://blog.flux7.com/blogs/nosgl/cagheoremwhy-doesit-matter

http://blog.flux7.com/blogs/nosql/cap-theorem-why-does-it-matter

CA without P (local consistency)

APartitioning (communication breakdown) causes a failure.

AWe can still hav€onsistencyand Availability of the data shared by agents
within each Partition by ignoring other partitions.

A Local rather than global consistency / availability

ALocal consistency for a partial system, 100% availability for the partial
system, and no partitioning does not exclude several partitions from
SEAAGAYT 6A0K GKSANI 26y GAVUSNYI £ €

ASo partitioning means havimgultiple independent systemsvith 100% CA
that do not need to interact

CP without A (transaction locking)

AA systemis allowed oot V4 6 SNJ NBIljdzSada Fad F€f

AWe claim to toleratgpartitioning/faults, because we simply block all
responses if a partition occurs, assuming that we cannot continue to
function correctly without the data on the other side of a partition.

AOnce the partition is healed armbnsistencycan once again be verified, we
can restore availability and leave this mode.

Aln this configuration there are global consistency, and global correct
behaviournn partitioning Is tablock access to replica setisat are not In
synch.

Aln order to tolerate P at any time, we must sacrifice A at any time for global
consistency.

AThis is basically theansaction lock

AP without C (best effort)

Alf we don't care abouglobal consistencyi.e. simultaneity), then every part of
the system can make available what it knows.

AEach part might be able to answer someone, even though the system as a whole
has been broken up into incommunicable regigpar{jitions).

Aln this configuration without consistency means without the assurance of global
consistencyat all times

Aconsequencef CAP

G9F OK y2RS AY | aéaiusSyYy akKz2dzZ R 0S
local state If you need to do something under high load wdhures
2O00dzNNAY 3 YR &2dz YSSR 02 N&BI OK
concerned abouscalability, any algorithm that forces you to run
agreement will eventually become yobottleneck® ¢ 1S G KU (

WernerVogels Amazon CTO and Vice President

Beyond CAP

AThe "2 of 3" view is misleading on several fronts.

AFirst, becauseartitions are rare, there is little reason to forfeit C or A when the
system is not partitioned.

ASecond, thehoice between C and #an occur many times within the same
system at very fine granularity; not only can subsystems make different choices,
but the choice can change according to the operation or even the specific data or
user involved.

AFinally, all thregroperties are more continuous than binanAvailability is
obviously continuous from O to 100 percent, but there are also many levels of
consistency, and even partitions have nuances, including disagreement within the
system about whether a partition exists.

ACID versus BASE

AACID and BASE represent two design philosophies at opposite ends @
the consistencyavailability spectrum

AACID properties focus @onsistencyand are the traditional
approach of databases

ABASE properties focus on higtailability and to make explicit both
the choice and the spectrum

ABASEBasically Available, Soft state, Eventually consistent, work well
In the presence gpartitions and thus promoteavailability

ACID

AThe four ACID properties are:

A Atomicity (A)All systems benefit from atomic operations, the database
transaction must completely succeed or fail, partial success is not allowed

A Consistency (CPuring the database transaction, the database progresses
from a valid state to another. In ACID, the C means that a transactien pre
serves all the database rules, such as unique keys. In contrast, the C in CAP
refers only to single copy consistency.

Alsolation (1) Isolation is at the core of the CAP theorem: if the system requires
ACID isolation, it can operate on at most one side during a partition, because
I Ot ASYidQa UNYyalrOdA2Yy Ydzald o0S Aazf

ADurability (D)The results of applying a transaction are permanent, it must
persist after the transaction completes, even in the presence of failures.

BASE

ABasically Availablethe system provides availability, in terms of the
CAP theorem

ASoft state:indicates that the state of the system may change over
time, even without input, because of the eventual consistency model.

AEventual consistencyndicates that the system will become
consistent over time, given that the system doesn't receive input
during that time

AExample: DN& Domain Name Servers
ADNS is not mukimaster

Conflictresolutionproblem

ATherearetwo customers A andB

AA books a hotel room, the lastvailable
room

AB doesthe same on adifferent node of
the system whichwasnot consistent

]
7

X

&

Conflictresolutionproblem

AThe hotel roondocumentis affectedby L - u

two conflictingupdates A | >l=

A B

AAppIicationsshoyldsoIve theconflictwith

customlogic(A Ua@asinesslecisior) ic (-

AThe database can .
ADetectthe conflict

A Providealocalsolution, e.g. latestversionis
savedasthe winningversion

Conflict

ACouchDRyjuarantees thaeach instancehat sees thesame
conflict comes up with thesame winningand losing
revisions

Alt does so by running @eterministic algorithmto pick the
winnetr.
AThe revision with the longest revision history list becomes the
winning revision.
Alf they are the same, the _rev values are compared in ASCII sort
order, and the highest wins.

HTTP API

a «aveb» database,

no adhocclient
required

HTTHRESTIUAPI

AHow toget adocumen® Useyour browser andarite its URL
Anhttp://localhost:5984/test/some doc id

AAnyapplicationandlanguagecanaccessveb data
AGET /somedatabasksome doc id HTTP/1.0

AHEAD /somedatabasksome doc id HTTP/1.0
AHTTP/1.1 200 OK

AWrite adocumentby meansof PUT HTTRequest
(specifyrevisionto avoidconflicty

APUT /somedatabasksome doc id HTTP/1.0
AHTTP/1.1 20Created
AHTTP/1.1 40€onflict

http://localhost:5984/test/some_doc_id

MongoDB

Theleading
NoSQldatabase .
currentlyon the mongo DB

market

AFull offeatures
beyondNoSQL

AHighperformance
andnatively
scalable

AOpen source

A311$millionsin
funding

A500+employees
A2000+customers

MongoDB- intro

Big Data

Product &
Asset Catalogs

Security &
Fraud

Internet of | Database-as- Complex Data
Things a- Service Management

o

.
e »

@ ENZRNOC

Customer
Data

stripe O/ Mchfee

Top Investment
and Retail Banks

Intelligence
Agencies

Single View

Top Global

Shipping Company 0 &
acio Cushman &
BOSCH v 1B Wakefield

7-‘ i Top Media
Company
i Topl t
Toduttd | topimesmen JoPuenn
SERpmant and Retail Banks
Manufacturer

Social & Content Embedded /
Collaboration| Management ISV

Cwitter
0, A2
fousquare]

Management

guardian
GILT IntuIt

€Harmony’

. »)
Metlife ":ﬂ.ll

b

@ stripe

Telefemica

) ' ' &h h o
o - ()
m Forlms Adc ¢ Experence
foursquare] i
hutterfiv® eb: :
eramony | el €03y Csitecore

http://www.slideshare.net/mongodb/introductiorto-mongodik56807822

http://www.slideshare.net/mongodb/introduction-to-mongodb-56807822

MongoDB- why

shard, shard; shard; shard,

=

What? Why? mongod mengod mongod mengod
\
JSON End to End / e
No Schema “No DBA”, Just Serialize
Write 10K Inserts/sec on virtual machine T R S
Read Similar to MySQL |
HA 10 min to setup a cluster
Sharding Out of the Box : . — :
Fri Apr 26 22:49:38.567 [initandlisten] connection accepted from 127.0.0.1:4824
5 #7 (1 connection now open)
LBS Great for that > use project
switched to db project
n > db.posts.getIndexes()
No Schema None: no downtime to create new columns [.
"v' o1,
Buzz Trend is with NoSQL B

1,
"ns" : "project.posts”,
"name" : " id_"

http://blogs.microsoft.co.il/blogs/vprnd

http://top-performance.blogspot.com

MongoDBc DocumentData Design

Ald—li nlevel businesgeadyrepresentationof the
ata

AFlexibleandrich, adaptingto mostusecases

AMappinginto developerlanguagebjects
Ayear month, day, timestamp
Alists, subdocuments etc.

ABUT

ARelationsamongdocuments recordsare
Inefficient andleadsto de-normalization

A Object(IDYyeference with no native join

ATemptationto gotoo muchschemafree / non
relationalevenwith structuredrelationaldata

