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«NoSQL» birth

ÅIn 1998Carlo {ǘǊƻȊȊƛΩǎlightweight, open-source relational
database that did not exposethe standard SQL interface

ÅIn 2009Johan hǎƪŀǊǎǎƻƴΩǎ(Last.fm) organizesan eventto 
discussrecentadvanceson non-relationaldatabases. A 
new, unique, short hashtagto promote the eventon 
Twitter wasneeded: #NoSQL



NoSQLmainfeatures

horizontal
scalability

no joins

Exam

Course number

StudentID

Mark

Student

StudentID

Name

Surname

Course

Course number

Name

Professor

schema-less
(no tables, implicit schema)

StudentID Name Surname

S123456 Mario Rossi

http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset

http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset


Comparison

Relationaldatabases Non-Relationaldatabases

Table-based, eachrecordisa structuredrow
Specialized storagesolutions, e.g, document-based, 
key-value pairs, graph databases, columnar storage

Predefinedschemafor eachtable, changesallowed
but usuallyblocking(expensivein distributedand live 
environments)

Schema-less, schema-free,schema change is dynamic 
for each document, suitable for semi-structured
or un-structured data

Verticallyscalable, i.e.,typicallyscaledby increasing 
the power of the hardware

Horizontallyscalable, NoSQL databases are scaled by 
increasing the databases servers in the pool of 
resources to reduce the load

Use SQL (Structured Query Language) for defining and 
manipulating the data, very powerful

Custom querylanguages,focused on collection of
documents, graphs, and otherspecialized data 
structures



Comparison

Relationaldatabases Non-Relationaldatabases

Suitablefor complex queries, based on datajoins No standard interfaces to perform complex queries, no 
joins

Suitable for flat and structured data storage Suitable for complex(e.g., hierarchical) data,similar to 
JSON and XML

Examples: MySql, Oracle, Sqlite, Postgresand 
Microsoft SQL Server

Examples: MongoDB, BigTable, Redis, Cassandra, 
Hbaseand CouchDB



Typesof NoSQLdatabases

http://www.slideshare.net/Couchbase/webinar-making-sense-of-nosql-applying-nonrelational-databases-to-business-needs

http://www.slideshare.net/Couchbase/webinar-making-sense-of-nosql-applying-nonrelational-databases-to-business-needs


Key-valuesdatabases

ÅSimplestNoSQLdata stores

ÅMatch keyswith values

ÅNo structure

ÅGreat performance

ÅEasilyscaled

ÅVeryfast

ÅExamples: Redis, Riak, Memcached



Column-orienteddatabases

ÅStore data in columnarformat
ÅbŀƳŜ Ґ άDanieleέΥǊƻǿмΣǊƻǿоΤ άMarcoέΥǊƻǿнΣǊƻǿпΤ Χ

Å{ǳǊƴŀƳŜ Ґ άApilettiέΥǊƻǿмΣǊƻǿрΤ άRossiέΥǊƻǿнΣǊƻǿсΣǊƻǿтΧ

ÅA column is a (possibly-complex) attribute

ÅKey-value pairs stored and retrieved on key in a 
parallel system (similar to indexes)

ÅRowscan be constructed from column values

ÅColumn stores can produce row output (tables)

ÅCompletely transparent to application

ÅExamples: Cassandra, Hbase, Hypertable, 
Amazon DynamoDB



Graphdatabases

ÅBasedon graphtheory

ÅMade up by Vertexand Edges

ÅUsedto store information about
networks

ÅGoodfit for severalrealworld 
applications

ÅExamples: Neo4J, Infinite Graph, 
OrientDB



Documentdatabases

ÅDatabase storesand retrievesdocuments

ÅKeys are mappedto documents

ÅDocumentsare self-describing
(attribute=value)

ÅHashierarchical-tree nesteddata structures
(e.g., maps, lists, datetimeΣ Χύ

ÅHeterogeneousnature of documents

ÅExamples: MongoDB, CouchDB, RavenDB.



a notableNoSQLexample

CouchDB

Cluster Of Unreliable
Commodity Hardware



CouchDBoriginalhome page

Written in Erlang, a robust
functionalprogramminglanguage
idealfor building concurrent
distributed systems. Erlangallows
for a flexibledesign that iseasily
scalableand readilyextensible

Providesa RESTful
JSON API than can be 
accessedfrom any
enviromentthat
allowsHTTPrequests

Offersincremental
replicationwith bi-
directionalconflict
detectionand 
resolution

Document-oriented database 
can be queriedand indexedin 
a MapReducefashion



CouchDBoriginalhome page

Written in Erlang, a robust
functionalprogramminglanguage
idealfor building concurrent
distributed systems. Erlangallows
for a flexibledesign that iseasily
scalableand readilyextensible

Providesa RESTful
JSON API than can be 
accessedfrom any
enviromentthat
allowsHTTPrequests

Offersincremental
replicationwith bi-
directionalconflict
detectionand 
resolution
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MapReduce

a scalabledistributed
programmingmodel
to processBig Data



MapReduce
ÅPublishedin 2004by Google
ÅJ. Dean and S. GhemawatΣ άaŀǇwŜŘǳŎŜΥ {ƛƳǇƭƛŦƛŜŘ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎ ƻƴ [ŀǊƎŜ /ƭǳǎǘŜǊǎέΣ h{5LϥлпΥ 

Sixth Symposium on Operating System Design and Implementation, San Francisco, CA, December, 
2004
Åused to rewrite the production indexing system with 24 MapReduce operations (in August 2004 

alone, 3288 TeraBytesread, 80k machine-Řŀȅǎ ǳǎŜŘΣ Ƨƻōǎ ƻŦ млΩ avg)

ÅDistributed programmingmodel

ÅProcesslarge data sets with parallelalgorithmson a clusterof common machines, e.g., 
PCs

ÅGreat for parallel jobsrequiringpiecesof computationsto be executedon all data 
records

ÅMove the computation (algorithm) to the data (remote node, PC, disk)

ÅInspiredby the mapand reduce functionsusedin functional programming
Å In functional code, the output value of a function depends only on the arguments that are passed to the function, so 

calling a function f twice with the same value for an argument x produces the same result f(x)each time; this is in 
contrast to procedures depending on a local or global state, which may produce different results at different times 
when called with the same arguments but a different program state.



MapReduce: workingprinciples

ÅConsists of two functions, a Map and a Reduce
ÅThe Reduce is optional

ÅMap function 
ÅProcess each record (document) Ą INPUT
ÅReturn a list of key-valuepairs ĄOUTPUT

ÅReducefunction
Åfor each key, reduces the list of its values, returned by the map, to 
ŀ άǎƛƴƎƭŜέ ǾŀƭǳŜ 
ÅReturned value can be a complex piece of data, e.g., a list, tuple, 

etc.



Map

ÅMap functionsare calledonce for eachdocument:
function(doc) {

emit(key1, value1); // key1 = fk1(doc); value1 = fv1(doc)

emit(key2, value2); // key2 = fk2(doc); value2 = fv2(doc)

}

ÅThe mapfunctioncan chooseto skipthe documentaltogetheror 
emit one or more key/valuepairs

ÅMap functionmaynot dependon anyinformation outsidethe 
document. Thisindependenceiswhat allowsCouchDBviewsto be 
generatedincrementallyand in parallel



Mapexample

ÅExampledatabase, a collectionof docsdescribinguniversityexamrecords

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8



Mapexample(1)
ÅList of examsand correspondingmarks

Function(doc){
emit(doc.exam, doc.mark);

} Result:
Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

doc.id Key Value

6 Bioinformatics 30

2 Computerarchitectures 24

3 Computerarchitectures 27

1 Database 29

4 Database 26

8 Database 25

5 Software engineering 21

7 Software engineering 18

Key Value



Mapexample(2)
ÅOrdered list of exams, academic year, and date, and select their mark

Function(doc) {
key= [doc.exam, doc.AYear]
value= doc.mark
emit(key, value);

}

Result:

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

doc.id Key Value

6 [Bioinformatics, 2015-16] 30

2 [Computerarchitectures, 2015-16] 24

3 [Computerarchitectures, 2015-16] 27

4 [Database, 2014-15] 26

8 [Database, 2014-15] 25

1 [Database, 2015-16] 29

5 [Software engineering, 2014-15] 21

7 [Software engineering, 2015-16] 18



Mapexample(3)
ÅOrderedlist of students, with markand CFU for eachexam

Function(doc) {
key= doc.student
value= [doc.mark, doc.CFU]
emit(key, value);

}
Result:

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

doc.id Key Value

1 S123456 [29, 8]

2 S123456 [24, 10]

5 S123456 [21, 8]

6 S123456 [30, 6]

3 S654321 [27, 10]

4 S654321 [26, 8]

7 S654321 [18, 8]

8 s987654 [25,8]



Reduce

ÅDocuments (key-value pairs) emitted by the map function are 
sorted by key
Åsome platforms (e.g. Hadoop) allow you to specifically define a shuffle phase to 

manage the distribution of map results to reducers spread over different nodes, thus 
providing a fine-grained control over communication costs

ÅReduce inputs are the map outputs: a list of key-value documents

ÅEach execution of the reduce function returns one key-value document

ÅThe most simple SQL-equivalent operations performed by means of 
reducers are «group by» aggregations, but reducers are very flexible 
functions that can execute even complex operations

ÅRe-reduce: reduce functions can be called on their own results in CouchDB



MapReduce example(1)

ÅMap - List of examsand 
correspondingmark

Function(doc){

emit(doc.exam, doc.mark);

}

ÅReduce - Compute the 
averagemarkfor eachexam

Function(key, values){

S = sum(values);

N = len(values);

AVG = S/N;

return AVG;

}

Key Value

Bioinformatics 30

Computer
architectures

25.5

Database 26.67

Software 
engineering

19.5

doc.id Key Value

6 Bioinformatics 30

2 Computerarchitectures 24

3 Computerarchitectures 27

1 Database 29

4 Database 26

8 Database 25

5 Software engineering 21

7 Software engineering 18

Map Reduce

The reduce functionreceives:
Å key=Bioinformatics, values=[30]
Å Χ
Å key=Database, values=[29,26,25]
Å Χ

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8



MapReduceexample(2)

doc.id Key Value

6 Bioinformatics, 2015-16 30

2 Computerarchitectures, 2015-16 24

3 Computerarchitectures, 2015-16 27

4 Database, 2014-15 26

8 Database, 2014-15 25

1 Database, 2015-16 29

5 Software engineering, 2014-15 21

7 Software engineering, 2015-16 18

Key Value

[Bioinformatics, 2015-16] 30

[Computerarchitectures, 
2015-16]

25.5

[Database, 2014-15] 25.5

[Database, 2015-16] 29

[Software engineering, 2014-15] 21

[Software engineering, 2015-16] 18

Map Reduce

ÅMap- List of examsand 
correspondingmark

Function(doc){

emit(

[doc.exam, doc.AYear],

doc.mark

);

}

ÅReduce - Compute the average
markfor each
examand academicyear

Function(key, values){

S = sum(values);

N = len(values);

AVG = S/N;

return AVG;

}

The reduce functionreceives:
Å key=[Database, 2014-15], values=[26,25]
Å key=[Database, 2015-16], values=[29]
Å Χ

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Reduce is the sameasbefore



Rereducein CouchDB
ÅAveragemarkthe for eachexam(grouplevel=1) ςsameReduce asbefore

doc.id Key Value

6 Bioinformatics, 2015-16 30

2
Computerarchitectures, 

2015-16
24

3
Computerarchitectures, 

2015-16
27

4
Database, 2014-1015

26

8
Database, 2014-15

25

1 Database, 2015-16 29

5 Software engineering, 2014-15 21

7 Software engineering, 2015-16 18

Key Value

[Bioinformatics, 2015-16] 30

[Computerarchitectures, 
2015-16]

25.5

[Database, 2014-15] 25.5

[Database, 2015-16] 29

[Software engineering, 2014-15] 21

[Software engineering, 2015-16] 18

Id: 3
Exam: Computer 
architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer 
architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software 
engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software 
engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

Map ReduceDB

Key Value

Bioinformatics 30

Computerarchitectures 25.5

Database 27.25

Software engineering 19.5

Rereduce



MapReduce example(3a)

ÅMapFunction(doc) {

key= doc.student
value= [doc.mark, doc.CFU]
emit(key, value);

}

ÅReduce
Function(key, values){

S = sum([ X*Yfor X,Y in values]);
N = sum([ Yfor X,Y in values]);
AVG = S/N;
return AVG;

}

doc.id Key Value

Map

Key Value

ReduceThe reduce functionreceives:
Å key= 

values=
Å Χ
Å key= 
Å values=

The reduce functionresults:
Å key= 

values=
Å Χ
Å key= 
Å values=

AverageCFU-weightedmark for eachstudent

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8



MapReduce example(3a)
ÅMap- Orderedlist of students, with 

markand CFU for eachexam
Function(doc) {

key= doc.student
value= [doc.mark, doc.CFU]
emit(key, value);

}

ÅReduce - AverageCFU-weighted
markfor eachstudent

Function(key, values){
S = sum([ X*Yfor X,Y in values]);
N = sum([ Yfor X,Y in values]);
AVG = S/N;
return AVG;

}

doc.id Key Value

1 S123456 [29, 8]

2 S123456 [24, 10]

5 S123456 [21, 8]

6 S123456 [30, 6]

3 S654321 [27, 10]

4 S654321 [26, 8]

7 S654321 [18, 8]

8 s987654 [25,8]

Map

Key Value

S123456 25.6

S654321 23.9

s987654 25

Reduce

The reduce functionreceives:
Å key=S123456, 

valuesҐώόнфΣуύΣ όнпΣмлύΣ όнмΣуύΧϐ
Å Χ
Å key=s987654, values=[(25,8)]

key= S123456, 
valuesҐ ώόнфΣуύΣ όнпΣмлύΣ όнмΣуύΧϐ
XҐ нфΣ нпΣ нмΣ Χ Ąmark
YҐ уΣ млΣ уΣ ΧĄCFU



MapReduce example(3b)
ÅCompute the numberof examsfor eachstudent

ÅTechnologicalviewof data distributionamongdifferent nodes

Id: 3 Exam: Computer architecturesStudent: s654321
AYear: 2015-16 Date: 26-01-2016 Mark=27 CFU=10

Id: 4 Exam: Database Student: s654321
AYear: 2014-15 Date: 26-07-2015 Mark=26 CFU=8

Id: 1 Exam: Database Student: s123456 
AYear: 2015-16 Date: 31-01-2016  Mark=29 CFU=8

Id: 2 Exam: Computer architecturesStudent: s123456 
AYear: 2015-16 Date: 03-07-2015 Mark=24 CFU=10

Id: 5 Exam: Software engineeringStudent: s123456
AYear: 2014-15 Date: 14-02-2015 Mark=21 CFU=8

Id: 6 Exam: BioinformaticsStudent: s123456
AYear: 2015-16 Date: 18-09-2016 Mark=30 CFU=6

Id: 7 Exam: Software engineeringStudent: s654321
AYear: 2015-16 Date: 28-06-2016 Mark=18 CFU=8

Id: 8 Exam: Database Student: s987654
AYear: 2014-15 Date: 28-06-2015 Mark=25 CFU=8

DB
doc.id Key Value

1 S123456 [29, 1]

2 S123456 [24, 1]

5 S123456 [21, 1]

6 S123456 [30, 1]

3 S654321 [27, 1]

4 S654321 [26, 1]

7 S654321 [18, 1]

8 s987654 [25,1]

Map

Key Value

S123456 3

S123456 1

S654321 3

s987654 1

Reduce

Key Value

S123456 4

S654321 3

s987654 1

Rereduce



Views(indexes)

ÅThe onlyway to query CouchDBis to build a viewon the data

ÅA viewisproducedby a MapReduce

ÅThe predefinedviewfor eachdatabase has
Åthe documentID askey, 
Åthe wholedocumentasvalue
Åno Reduce

ÅCouchDBviewsare materializedasvaluessortedby key
Åallowsthe sameDB to havemultiple primary indexes

ÅWhenwriting CouchDBmapfunctions, your primarygoal is to build
an indexthat storesrelated data under nearbykeys



Replication

Samedata 
in different places

(contentand schema)



Replication

ÅSamedata
Åportionsof the wholedataset(chunks)

Åin different places
Ålocaland/or remote servers, clusters, data centers

ÅGoals
ÅRedundancyhelpssurvivingfailures(availability)
ÅBetterperformance

ÅApproaches
ÅMaster-Slave replication
ÅA-Synchronousreplication



Master-Slave replication

ÅMaster-Slave
ÅA masterserver takesall the 

writes, updates, inserts

ÅOneor more Slaveserverstake all
the reads(theyŎŀƴΩǘwrite)

ÅOnlyreadscalability

ÅThe master isa single point of 
failure

ÅCouchDBsupports
Master-Master replication

Master

Slave Slave Slave Slave

Χ Χ

Onlyreadoperations

Read-write operations



Synchronousreplication

ÅBeforecommittinga transaction, the Master waits for (all) the Slavesto commit
ÅSimilarin conceptto the 2-Phase Commitin relationaldatabases
ÅPerformancekiller, in particularfor replicationin the cloud
ÅTrade-off: wait for a subset of Slavesto commit, e.g., the majority of them

Master

Slave Slave Slave Slave

Χ Χ

Replicate

LǘΩǎready to commit
new transaction

Wait for all slaves



Asynchronousreplication

ÅThe Master commitslocally, it doesnot wait for anySlave
ÅEachSlave independentlyfetchesupdatesfrom Master, whichmayfailΧ
ÅIF no Slave hasreplicated, thenȅƻǳΩǾŜlost the data committedto the Master
ÅIF some Slaveshavereplicatedand some ƘŀǾŜƴΩǘ, then youhaveto reconcile

ÅFasterand unreliable

Master

Slave Slave Slave Slave

Χ Χ

Replicate

Can commitother
transactions



Distributed databases

Different autonomous
machines, working
together to manage
the samedataset



Keyfeaturesof distributeddatabases

ÅThereare 3 typicalproblemsin distributeddatabases:

ÅConsistency
ÅAll the distributeddatabasesprovidethe samedata to the application

ÅAvailability
ÅDatabase failures(e.g., master node) do not preventsurvivorsfrom 

continuingto operate

ÅPartition tolerance
ÅThe systemcontinuesto operate despitearbitrarymessageloss, 

whenconnectivityfailurescause network partitions



CAP Theorem
ÅTheCAP theorem, also known as Brewer's theorem, 

states that it is impossiblefor a distributed systemto 
simultaneouslyprovide all three of the previous 
guarantees

ÅThe theorem began as a conjecturemade by 
University of California in 1999-2000
Å !ǊƳŀƴŘƻ CƻȄ ŀƴŘ 9ǊƛŎ .ǊŜǿŜǊΣ άIŀǊǾŜǎǘΣ ¸ƛŜƭŘ ŀƴŘ {ŎŀƭŀōƭŜ 
¢ƻƭŜǊŀƴǘ {ȅǎǘŜƳǎέΣ tǊƻŎΦ тǘƘ ²ƻǊƪǎƘƻǇ Iƻǘ ¢ƻǇƛŎǎ ƛƴ 
Operating Systems (HotOS99), IEEE CS, 1999, pg. 174-178.

ÅIn 2002 a formal proof was published,
establishing it as a theorem
Å {ŜǘƘ DƛƭōŜǊǘ ŀƴŘ bŀƴŎȅ [ȅƴŎƘΣ ά.ǊŜǿŜǊϥǎ ŎƻƴƧŜŎǘǳǊŜ ŀƴŘ 

the feasibility of consistent, available, partition-tolerant 
ǿŜō ǎŜǊǾƛŎŜǎέΣ !/a {LD!/¢ bŜǿǎΣ ±ƻƭǳƳŜ оо LǎǎǳŜ н όнллнύΣ ǇƎΦ рм-59

ÅIn 2012, a follow-ǳǇ ōȅ 9ǊƛŎ .ǊŜǿŜǊΣ ά/!t ǘǿŜƭǾŜ 
ȅŜŀǊǎ ƭŀǘŜǊΥ Iƻǿ ǘƘŜ ϦǊǳƭŜǎϦ ƘŀǾŜ ŎƘŀƴƎŜŘέ
Å IEEE Explore, Volume 45, Issue 2 (2012), pg. 23-29.

http://guide.couchdb.org/editions/1/en/consistency.html#figure/1

http://guide.couchdb.org/editions/1/en/consistency.html#figure/1


CAP Theorem
ÅThe easiest way to understand CAP is to think of two 

nodes on opposite sides of a partition . 

ÅAllowing at least one node to update state will cause 
the nodes to become inconsistent, thus forfeiting C. 

ÅIf the choice is to preserve consistency, one side of 
the partition must act as if it is unavailable, thus 
forfeiting A. 

ÅOnly when no network partition exists, is it possible 
to preserve both consistency and availability, thereby 
forfeiting P.

ÅThe general belief is that for wide-area systems, 
designers cannot forfeit P and therefore have a 
difficult choice between C and A.

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed


CAP Theorem

http://blog.flux7.com/blogs/nosql/cap-theorem-why-does-it-matter

http://blog.flux7.com/blogs/nosql/cap-theorem-why-does-it-matter


CA without P (local consistency)

ÅPartitioning (communication breakdown) causes a failure.

ÅWe can still have Consistencyand Availability of the data shared by agents 
within each Partition, by ignoring other partitions.
ÅLocal rather than global consistency / availability

ÅLocal consistency for a partial system, 100% availability for the partial 
system, and no partitioning does not exclude several partitions from 
ŜȄƛǎǘƛƴƎ ǿƛǘƘ ǘƘŜƛǊ ƻǿƴ άƛƴǘŜǊƴŀƭέ /!Φ

ÅSo partitioning means having multiple independent systems with 100% CA 
that do not need to interact.



CP without A (transaction locking)

ÅA system is allowed tonotŀƴǎǿŜǊ ǊŜǉǳŜǎǘǎ ŀǘ ŀƭƭ όǘǳǊƴ ƻŦŦ ά!έύΦ

ÅWe claim to tolerate partitioning/faults , because we simply block all 
responses if a partition occurs, assuming that we cannot continue to 
function correctly without the data on the other side of a partition.

ÅOnce the partition is healed and consistencycan once again be verified, we 
can restore availability and leave this mode.

ÅIn this configuration there are global consistency, and global correct 
behaviourin partitioning is to block access to replica sets that are not in 
synch.

ÅIn order to tolerate P at any time, we must sacrifice A at any time for global 
consistency.

ÅThis is basically the transaction lock.



AP without C (best effort)

ÅIf we don't care about global consistency (i.e. simultaneity), then every part of 
the system can make available what it knows. 

ÅEach part might be able to answer someone, even though the system as a whole 
has been broken up into incommunicable regions (partitions). 

ÅIn this configuration without consistency means without the assurance of global 
consistency at all times. 



A consequenceof CAP

ά9ŀŎƘ ƴƻŘŜ ƛƴ ŀ ǎȅǎǘŜƳ ǎƘƻǳƭŘ ōŜ ŀōƭŜ ǘƻ ƳŀƪŜ ŘŜŎƛǎƛƻƴǎ ǇǳǊŜƭȅ ōŀǎŜŘ ƻƴ 
local state. If you need to do something under high load with failures
ƻŎŎǳǊǊƛƴƎ ŀƴŘ ȅƻǳ ƴŜŜŘ ǘƻ ǊŜŀŎƘ ŀƎǊŜŜƳŜƴǘΣ ȅƻǳΩǊŜ ƭƻǎǘΦ LŦ ȅƻǳΩǊŜ 
concerned about scalability, any algorithm that forces you to run 

agreement will eventually become your bottleneckΦ ¢ŀƪŜ ǘƘŀǘ ŀǎ ŀ ƎƛǾŜƴΦέ
Werner Vogels, Amazon CTO and Vice President



Beyond CAP

ÅThe "2 of 3" view is misleading on several fronts.

ÅFirst, because partitions are rare, there is little reason to forfeit C or A when the 
system is not partitioned. 

ÅSecond, the choice between C and A can occur many times within the same 
system at very fine granularity; not only can subsystems make different choices, 
but the choice can change according to the operation or even the specific data or 
user involved. 

ÅFinally, all three properties are more continuous than binary. Availability is 
obviously continuous from 0 to 100 percent, but there are also many levels of 
consistency, and even partitions have nuances, including disagreement within the 
system about whether a partition exists.



ACID versus BASE

ÅACID and BASE represent two design philosophies at opposite ends of 
the consistency-availability spectrum

ÅACID properties focus on consistencyand are the traditional 
approach of databases

ÅBASE properties focus on high availability and to make explicit both 
the choice and the spectrum

ÅBASE: Basically Available, Soft state, Eventually consistent, work well 
in the presence of partitions and thus promote availability



ACID

ÅThe four ACID properties are:
ÅAtomicity (A)All systems benefit from atomic operations, the database 

transaction must completely succeed or fail, partial success is not allowed

ÅConsistency (C) During the database transaction, the database progresses 
from a valid state to another. In ACID, the C means that a transaction pre-
serves all the database rules, such as unique keys. In contrast, the C in CAP 
refers only to single copy consistency.

ÅIsolation (I) Isolation is at the core of the CAP theorem: if the system requires 
ACID isolation, it can operate on at most one side during a partition, because 
ŀ ŎƭƛŜƴǘΩǎ ǘǊŀƴǎŀŎǘƛƻƴ Ƴǳǎǘ ōŜ ƛǎƻƭŀǘŜŘ ŦǊƻƳ ƻǘƘŜǊ ŎƭƛŜƴǘΩǎ ǘǊŀƴǎŀŎǘƛƻƴ

ÅDurability (D) The results of applying a transaction are permanent, it must 
persist after the transaction completes, even in the presence of failures.



BASE

ÅBasically Available: the system provides availability, in terms of the 
CAP theorem

ÅSoft state:indicates that the state of the system may change over 
time, even without input, because of the eventual consistency model.

ÅEventual consistency:indicates that the system will become 
consistent over time, given that the system doesn't receive input 
during that time

ÅExample: DNS ςDomain Name Servers
ÅDNS is not multi-master



Conflictresolutionproblem

ÅThereare two customers, A and B

ÅA books a hotel room, the last available
room

ÅBdoesthe same, on a different nodeof 
the system, whichwasnot consistent



Conflictresolutionproblem

ÅThe hotel room documentisaffectedby 
two conflictingupdates

ÅApplications shouldsolve the conflictwith 
custom logic(ƛǘΩǎa business decision)

ÅThe database can 
ÅDetectthe conflict

ÅProvidea localsolution, e.g., latestversionis
savedasthe winningversion



Conflict

ÅCouchDBguarantees that each instance that sees the same 
conflict comes up with the same winningand losing 
revisions. 

ÅIt does so by running a deterministic algorithm to pick the 
winner.
ÅThe revision with the longest revision history list becomes the 

winning revision. 

ÅIf they are the same, the _rev values are compared in ASCII sort 
order, and the highest wins.



HTTP API

a «web» database,

no ad-hoc client
required



HTTP RESTfulAPI

ÅHow to get a document? Use your browser and write its URL
Åhttp://localhost:5984/test/some_doc_id

ÅAnyapplicationand languagecan accessweb data
ÅGET /somedatabase/some_doc_id HTTP/1.0
ÅHEAD /somedatabase/some_doc_id HTTP/1.0
ÅHTTP/1.1 200 OK

ÅWrite a documentby meansof PUT HTTP request
(specifyrevisionto avoidconflicts)
ÅPUT /somedatabase/some_doc_id HTTP/1.0
ÅHTTP/1.1 201 Created
ÅHTTP/1.1 409 Conflict

http://localhost:5984/test/some_doc_id


MongoDB

The leading
NoSQLdatabase 
currentlyon the 

market



MongoDB- intro

ÅFull of features, 
beyondNoSQL

ÅHigh performance
and natively
scalable

ÅOpen source

Å311$ millionsin 
funding

Å500+ employees

Å2000+ customers
http://www.slideshare.net/mongodb/introduction-to-mongodb-56807822

http://www.slideshare.net/mongodb/introduction-to-mongodb-56807822


MongoDB- why



MongoDBςDocumentData Design

ÅHigh-level, business-ready representationof the 
data
ÅFlexibleand rich, adaptingto mostuse cases
ÅMappinginto developer-languageobjects
Åyear, month, day, timestamp, 
Ålists, sub-documents, etc.

ÅBUT

ÅRelations amongdocuments/ recordsare 
inefficient, and leadsto de-normalization
ÅObject(ID) reference, with no native join

ÅTemptationto go too muchschema-free / non-
relationalevenwith structuredrelationaldata


