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 Word count problem 

 Input: (unstructured) textual file 

 Output: number of occurrences of each word 
appearing at least one time in the input file  
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 Input file 

 

 

 

 Output pairs 
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Toy example  
file for Hadoop.  
Hadoop running  
example. 

(toy, 1) 
(example, 2) 
(file, 1) 
(for, 1) 
(hadoop, 2) 
(running, 1) 



 Word count problem 

 Input: a HDFS folder containing textual files 

 Output: number of occurrences of each word 
appearing in at least one file of the collection (i.e., 
files of the input directory) 

 The only difference with respect to exercise 
#1 is given by the input 

 Now the input is a collection of textual files 
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 Input files 

 

 

 

 Output pairs 
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Toy example  
file for Hadoop.  
Hadoop running  

example. 

(another, 1) 
(example, 2) 
(file, 2) 
(for, 2) 
(hadoop, 3) 
(running, 1) 
(toy, 1) 

Another  file for 
Hadoop.  



 PM10 pollution analysis 

 Input: a (structured) textual file containing the 
daily value of PM10 for a set of sensors 

▪ Each line of the file has the following format 

sensorId,date\tPM10 value (μg/m3 )\n 

 Output: report for each sensor the number of days 
with PM10 above a specific threshold 

▪ Suppose to set threshold =  50 μg/m3  

▪ Select only the sensors that are associated at least one 
time with a PM10 above the  threshold 
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 Input file 

 

 

 

 

 

 Output pairs 
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s1,2016-01-01 20.5 
s2,2016-01-01 30.1 
s1,2016-01-02 60.2 
s2,2016-01-02 20.4 
s1,2016-01-03 55.5 
s2,2016-01-03 52.5 
 
 

(s1, 2) 
(s2, 1) 



 PM10 pollution analysis per city zone 
 Input: a (structured) textual file containing the 

daily value of PM10 for a set of city zones 
▪ Each line of the file has the following format 

zoneId,date\tPM10 value (μg/m3 )\n 

 Output: report for each zone the list of dates 
associated with a PM10 value above a specific 
threshold 
▪ Suppose  to set threshold =  50 μg/m3  

▪ Report only the zones with at least one date with PM10 above 
the threshold 
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 Input file 

 

 

 

 

 

 Output pairs 
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zone1,2016-01-01 20.5 
zone2,2016-01-01 30.1 
zone1,2016-01-02 60.2 
zone2,2016-01-02 20.4 
zone1,2016-01-03 55.5 
zone2,2016-01-03 52.5 
 
 

(zone1, [2016-01-03, 2016-01-02]) 
(zone2, [2016-01-01]) 



 Average  

 Input: a collection of (structured) textual csv files 
containing the daily value of PM10 for a set of 
sensors 

▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: report for each sensor the average value 
of PM10 
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 Input file 

 

 

 

 

 

 Output pairs 
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s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 

(s1, 45.4) 
(s2, 34.3) 



 Max and Min  

 Input: a collection of (structured) textual csv files 
containing the daily value of PM10 for a set of 
sensors 

▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: report for each sensor the maximum and 
the minimum value of PM10 
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 Input file 

 

 

 

 

 

 Output pairs 
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s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 

(s1, max=60.2_min=20.5) 
(s2, max=52.5_min=20.4) 
 



 Inverted index 

 Input: a textual file containing a set of sentences 

▪ Each line of the file has the following format 

sentenceId\tsentence\n 

 Output: report for each word w the list of 
sentenceIds of the sentences containing w 

▪ Do not consider the words “and”, “or”, “not” 
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 Input file 

 

 

 

 

 

 Output pairs 
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(hadoop, [Sentence#1, Sentence#2, Sentence#3]) 
(spark, [Sentence#1, Sentence#2]) 
(java, [Sentence#2]) 
(big, [Sentence#3]) 
(data, [Sentence#3]) 

Sentence#1 Hadoop or Spark 
Sentence#2 Hadoop or Spark and Java 
Sentence#3 Hadoop and Big Data 



 Total income for each month of the year and 
Average monthly income per year 
 Input: a (structured) textual csv files containing 

the daily income of a company 
▪ Each line of the files has the following format 

date\tdaily income\n 

 Output: 
▪ Total income for each month of the year 

▪ Average monthly income for each year considering only 
the months with a total income greater than 0 
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 Input file 

 

 

 

 

 

 Output 
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2015-11-01 1000 
2015-11-02 1305 
2015-12-01 500 
2015-12-02 750 
2016-01-01 345 
2016-01-02 1145 
2016-02-03 200 
2016-02-04 500 
 
 

(2015-11,2305) 
(2015-12, 1250) 
(2016-01, 1490) 
(2016-02, 700) 

(2015, 1777.5) 
 
(2016,1095.0) 



 Word count problem 

 Input: (unstructured) textual file 

 Output: number of occurrences of each word 
appearing in the input file  

 Solve the problem by using in-mapper 
combiners 
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 Input file 

 

 

 

 Output pairs 
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Toy example  
file for Hadoop.  
Hadoop running  
example. 

(toy, 1) 
(example, 2) 
(file, 1) 
(for, 1) 
(hadoop, 2) 
(running, 1) 



 Total count  

 Input: a collection of (structured) textual csv files 
containing the daily value of PM10 for a set of 
sensors 

▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: total number of records 
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 Input file 

 

 

 

 

 

 Output: 6 
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s1,2016-01-01,20.5 
s2,2016-01-01,60.2 
s1,2016-01-02,30.1 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 



 Average  
 Input: a collection of (structured) textual csv files 

containing the daily value of PM10 for a set of 
sensors 
▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: report for each sensor the average value 
of PM10 

 Suppose the number of sensors is equal to 2 and 
their ids are s1 and s2 
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 Input file 

 

 

 

 

 

 Output 
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s1,2016-01-01,20.5 
s2,2016-01-01,60.2 
s1,2016-01-02,30.1 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 

s1, 45.4 
s2, 34.3 



 Select outliers 

 Input: a collection of (structured) textual files 
containing the daily value of PM10 for a set of 
sensors 

▪ Each line of the files has the following format 

sensorId,date\tPM10 value (μg/m3 )\n 

 Output: the records with a PM10 value below a 
user provided threshold (the threshold is an 
argument of the program) 
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 Input file 

 

 

 

 

 Threshold: 21  

 Output 
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s1,2016-01-01 20.5 
s2,2016-01-01 60.2 
s1,2016-01-02 30.1 
s2,2016-01-02 20.4 
s1,2016-01-03 55.5 
s2,2016-01-03 52.5 
 
 

s1,2016-01-01 20.5 
s2,2016-01-02 20.4 



 Top 1 most profitable date 

 Input: a (structured) textual csv files containing 
the daily income of a company 

▪ Each line of the files has the following format 

date\tdaily income\n 

 Output: 

▪ Select the date and income of the top 1 most profitable 
date 
▪ In case of tie, select the first date 
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 Input file 

 

 

 

 

 

 Output 
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2015-11-01 1000 
2015-11-02 1305 
2015-12-01 500 
2015-12-02 750 
2016-01-01 345 
2016-01-02 1145 
2016-02-03 200 
2016-02-04 500 
 
 

2015-11-02 1305 



 Top 2 most profitable dates 

 Input: a (structured) textual csv files containing 
the daily income of a company 

▪ Each line of the files has the following format 

date\tdaily income\n 

 Output: 

▪ Select the date and income of the top 2 most profitable 
dates 
▪ In case of tie, select the first 2 dates among the ones associated 

with the highest income 
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 Input file 

 

 

 

 

 

 Output 
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2015-11-01 1000 
2015-11-02 1305 
2015-12-01 500 
2015-12-02 750 
2016-01-01 345 
2016-01-02 1145 
2016-02-03 200 
2016-02-04 500 
 
 

2015-11-02 1305 
2016-01-02 1145 



 Dictionary 

 Input: a collection of news (textual files) 

 Output: 

▪ List of distinct words occurring in the collection 
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 Input file 

 

 

 

 Output 

31 

Toy example  
file for Hadoop.  
Hadoop running  
example. 

example 
file 
for 
hadoop 
running 
toy 



 Dictionary – Mapping word - integer 

 Input: a collection of news (textual files) 

 Output: 

▪ List of distinct words occurring in the collection 
associated with a set of unique integers 
▪ Each word is associated with a unique integer (and viceversa) 

32 



 Input file 

 

 

 

 Output 

33 

Toy example  
file for Hadoop.  
Hadoop running  
example. 

(example, 1) 
(file , 2) 
(for , 3) 
(hadoop , 4) 
(running , 5) 
(toy , 6) 



 Select maximum temperature for each date 

 Input: two structured textual files containing the 
temperatures gathered by a set of sensors 

▪ Each line of the first file has the following format 

sensorID,date,hour,temperature\n 

▪ Each line of the second file has the following format 

date,hour,temperature,sensorID\n 

 Output: the maximum temperature for each date 
(considering the data of both input files) 
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 Input files 

 

 

 

 

 Output 
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s1,2016-01-01,14:00,20.5 
s2,2016-01-01,14:00,30.2 
s1,2016-01-02,14:10,11.5 
s2,2016-01-02,14:10,30.2 
 
 

2016-01-01 30.2 
2016-01-02 31.5 

2016-01-01,14:00,20.1,s3 
2016-01-01,14:00,10.2,s4 
2016-01-02,14:15,31.5,s3 
2016-01-02,14:15,20.2,s4 
 
 



 Filter the readings of a set of sensors based 
on the value of the measurement 

 Input: a set of textual files containing the 
temperatures gathered by a set of sensors 

▪ Each line of the files has the following format 

sensorID,date,hour,temperature\n 

 Output:  

▪ The lines of the input files associated with a 
temperature value greater than 30.0 
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 Input file 

 

 

 

 

 Output file 
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s1,2016-01-01,14:00,20.5 
s2,2016-01-01,14:00,30.2 
s1,2016-01-02,14:10,11.5 
s2,2016-01-02,14:10,30.2 
 

s2,2016-01-01,14:00,30.2 
s2,2016-01-02,14:10,30.2 
 



 Filter the readings of a set of sensors based 
on the value of the measurement 

 Input: a set of textual files containing the 
temperatures gathered by a set of sensors 

▪ Each line of the files has the following format 

sensorID,date,hour,temperature\n 

 Output:  

▪ The lines of the input files associated with a 
temperature value less than or equal to 30.0 
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 Input file 

 

 

 

 

 Output file 
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s1,2016-01-01,14:00,20.5 
s2,2016-01-01,14:00,30.2 
s1,2016-01-02,14:10,11.5 
s2,2016-01-02,14:10,30.2 
 

s1,2016-01-01,14:00,20.5 
s1,2016-01-02,14:10,11.5 
 



 Split the readings of a set of sensors based on 
the value of the measurement 
 Input: a set of textual files containing the 

temperatures gathered by a set of sensors 
▪ Each line of the files has the following format 

sensorID,date,hour,temperature\n 

 Output:  
▪ a set of files with the prefix “high-temp-” containing the lines 

of the input files with a temperature value greater than 30.0 

▪ a set of files with the prefix “normal-temp-” containing the 
lines of the input files with a temperature value less than or 
equal to 30.0 
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 Input file 

 

 

 

 Output files 
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s1,2016-01-01,14:00,20.5 
s2,2016-01-01,14:00,30.2 
s1,2016-01-02,14:10,11.5 
s2,2016-01-02,14:10,30.2 
 

s2,2016-01-01,14:00,30.2 
s2,2016-01-02,14:10,30.2 
 

s1,2016-01-01,14:00,20.5 
s1,2016-01-02,14:10,11.5 
 

high-temp-m-00001 normal-temp-m-00001 



 Split the readings of a set of sensors based on 
the value of the measurement 
 Input: a set of textual files containing the 

temperatures gathered by a set of sensors 
▪ Each line of the files has the following format 

sensorID,date,hour,temperature\n 

 Output:  
▪ a set of files with the prefix “high-temp-” containing the 

temperatures associated with the lines of the input files with 
temperature values greater than 30.0 

▪ a set of files with the prefix “normal-temp-” containing the 
lines of the input files with a temperature value less than or 
equal to 30.0 
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 Input file 

 

 

 

 Output files 
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s1,2016-01-01,14:00,20.5 
s2,2016-01-01,14:00,30.2 
s1,2016-01-02,14:10,11.5 
s2,2016-01-02,14:10,41.5 
 

30.2 
41.5 
 

s1,2016-01-01,14:00,20.5 
s1,2016-01-02,14:10,11.5 
 

high-temp-m-00001 normal-temp-m-00001 



 Stopword elimination problem 

 Input:   

▪ A large textual file containing one sentence per line 

▪ A small file containing a set of stopwords 
▪ One stopword per line 

 Output:  

▪ A textual file containing the same sentences of the large 
input file without the words appearing in the small file 

▪ The order of the sentences in the output file can be 
different from the order of the sentences in the input file 
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 Input files 

 Large file 

 

 

 

 Stopword file 

This is the first sentence and it contains some stopwords 
Second sentence with a stopword here and another here 
Third sentence of the stopword example 

a 
an 
and 
the 



 Output file 

 

 

 

This is  first sentence it contains some stopwords 
Second sentence with stopword here another here 
Third sentence of stopword example 



 Friends of a specific user 
 Input:  

▪ A textual file containing pairs of users (one pair per line) 
▪ Each line has the format  

 Username1,Username2 

▪ Each pair represents the fact that Username1 is friend of  Username2 
(and vice versa) 

▪ One username specified as parameter by means of the 
command line 

 Output: 
▪ The friends of the specified username stored in a textual file 

▪ One single line with the list of friends 
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 Input file 
 
 
 

 Username parameter: User2 
 Output file 

 

User1,User2 
User1,User3 
User1,User4 
User2,User5 

User1 User5 



 Potential friends of a specific user 
 Input:  

▪ A textual file containing pairs of users (one pair per line) 
▪ Each line has the format  
 Username1,Username2 

▪ Each pair represents the fact that Username1 is friend of  Username2 (and 
vice versa) 

▪ One username specified as parameter by means of the command 
line 

 Output: 
▪ The potential friends of the specified username stored in a textual 

file 
▪ One single line with the list of potential friends 

▪ User1 is a potential friend of User2 if they have at least one friend in 
common 
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 Input file 
 
 
 
 

 Username parameter: User2 
 Output file 

 

User1,User2 
User1,User3 
User1,User4 
User2,User3 
User2,User4 
User2,User5 
User5,User6 
 

User1 User3 User4 User6 
 



 Potential friends of a specific user 

 Solve problem #23 by removing the friends of the 
specified user from the list of its potential friends 
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 Input file 
 
 
 
 

 Username parameter: User2 
 Output file 

 
User6 
 

User1,User2 
User1,User3 
User1,User4 
User2,User3 
User2,User4 
User2,User5 
User5,User6 
 



 Compute the list of friends for each user 

 Input:  

▪ A textual file containing pairs of users (one pair per line) 
▪ Each line has the format  

 Username1,Username2 

▪ Each pair represents the fact that Username1 is friend of  
Username2 (and vice versa) 

 Output: 

▪ A textual file containing one line for each user. Each line 
contains a user and the list of its friends 
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 Input file 
 
 
 

 Output file 
 

User1,User2 
User1,User3 
User1,User4 
User2,User5 

User1: User2 User 3 User 4 
User2: User1 User5 
User3: User1 
User4: User1 
User5: User2 
 
 
 
 



 Compute the list of potential friends for each 
user 
 Input:  

▪ A textual file containing pairs of users (one pair per line) 
▪ Each line has the format  
 Username1,Username2 

▪ Each pair represents the fact that Username1 is friend of  Username2 
(and vice versa) 

 Output: 
▪ A textual file containing one line for each user with at least 

one potential friend. Each line contains a user and the list of 
its potential friends 

▪ User1 is a potential friend of User2 if they have at least one 
friend in common 
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 Input file 
 
 
 
 

 Output file 
 

User1: User2 User3 User4 User5 
User2: User1 User3 User4 User6 
User3: User1 User2 User4 User5 
User4: User1 User2 User3 User5 
User5: User1 User3 User4  
User6: User2 
 
 

User1,User2 
User1,User3 
User1,User4 
User2,User3 
User2,User4 
User2,User5 
User5,User6 
 



 Word (string) to integer conversion 
 Input:   

▪ A large textual file containing a list of words per line 

▪ The small file dictionary.txt containing the mapping of each 
possible word appearing in the first file with an integer. Each 
line contain the mapping of a word with an integer and it has 
the following format 
▪ Word\tInteger\n 

 Output:  
▪ A textual file containing the content of the large file where 

the appearing words are substituted by the corresponding 
integers 
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 Input files 

 Large textual file 

 

 

 Small dictionary file 

TEST CONVERTION WORD TO INTEGER 
SECOND LINE TEST WORD TO INTEGER 

1 CONVERTION 
2 INTEGER 
3 LINE 
4 SECOND 
5 TEST 
6 TO 
7 WORD 



 Output file 

 

 

 

5 1 7 6 2  
4 3 5 7 6 2 



 Categorization rules 

 Input:  

▪ A large textual file containing a set of records 
▪ Each line contains the information about  one single user 

▪ Each line has the format  

 UserId,Name,Surname,Gender,YearOfBirth,City,Education 

▪ A small file with a set of business rules that are used to 
assign each user to a category 
▪ Each line contains a business rule with the format 

 Gender=<value> and YearOfBirth=<value> -> Category 

▪ Rules are mutually exclusive 
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 Output: 

▪ One record for each user with the following format 
▪ The original information about the user plus the category 

assigned to the user by means of the business rules 

▪ Since the rules are mutually exclusive, there is only one rule 
applicable for each user 

▪ If no rules is applicable/satisfied by a user, assign the user to the  
“Unknown” category 
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 Users 
 
 
 

 Business rules 
 

User#1,John,Smith,M,1934,New York,Bachelor 
User#2,Paul,Jones,M,1956,Dallas,College 
User#3,Jenny,Smith,F,1934,Philadelphia,Bachelor 
User#4,Laura,White,F,1926,New York,Doctorate 
 
 

Gender=M and YearOfBirth=1934 -> Category#1 
Gender=M and YearOfBirth=1956 -> Category#3 
Gender=F and YearOfBirth=1934 -> Category#2 
Gender=F and YearOfBirth=1956 -> Category#3 
 



 Output 
 
 

 

User#1,John,Smith,M,1934,New York,Bachelor,Category#1 
User#2,Paul,Jones,M,1956,Dallas,College,Category#3 
User#3,Jenny,Smith,F,1934,Los Angleses,Bachelor,Category#2 
User#4,Laura,White,F,1926,New York,Doctorate,Unknown 
 
 



 Mapping Question-Answer(s) 

 Input:  

▪ A large textual file containing a set of questions 
▪ Each line contains one question 

▪ Each line has the format  

 QuestionId,Timestamp,TextOfTheQuestion 

▪ A large textual file containing a set of answers 
▪ Each line contains one answer 

▪ Each line has the format  

 AnswerId,QuestionId,Timestamp,TextOfTheAnswer 
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 Output: 

▪ One line for each pair (question,answer) with the 
following format 
▪ QuestionId,TextOfTheQuestion, AnswerId,TextOfTheAnswer 
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 Questions 
 
 
 

 Answers 
 

Q1,2015-01-01,What is ..? 
Q2,2015-01-03,Who invented .. 
 
 
 
 
 
 
A1,Q1,2015-01-02,It is .. 
A2,Q2,2015-01-03,John Smith 
A3,Q1,2015-01-05,I think it is .. 
 
 



 Output 
 
 

 

Q1,What is ..?,A1,It is .. 
Q1,What is ..?,A3,I think it is .. 
Q2,Who invented ..,A2,John Smith 
 
 
 

 
 



 User selection 

 Input:  

▪ A large textual file containing a set of records 
▪ Each line contains the information about  one single user 

▪ Each line has the format  

 UserId,Name,Surname,Gender,YearOfBirth,City,Education 

▪ A large textual file with pairs (Userid, MovieGenre) 
▪ Each line contains pair Userid, MovieGenre with the format 

 Userid,MovieGenre 

 It means that UserId likes movies of genre MovieGenre 
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 Output: 

▪ One record for each user that likes both Commedia and 
Adventure movies 

▪ Each output record contains only Gender and 
YearOfBirth of a selected user 
▪ Gender,YearOfBirth 

▪ Duplicate pairs must not be removed 
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 Users 
 
 

 Likes 
 

User#1,John,Smith,M,1934,New York,Bachelor 
User#2,Paul,Jones,M,1956,Dallas,College 
User#3,Jenny,Smith,F,1934,Philadelphia,Bachelor 
 
 

User#1,Commedia 
User#1,Adventure 
User#1,Drama 
User#2,Commedia 
User#2,Crime 
User#3,Commedia 
User#3,Horror 
User#3,Adventure 
 
 



 Output 
 
 

 

M,1934 
F,1934 


