
1

 Word count problem

 Input: (unstructured) textual file

 Output: number of occurrences of each word
appearing at least one time in the input file

2

 Input file

 Output pairs

3

Toy example
file for Hadoop.
Hadoop running
example.

(toy, 1)
(example, 2)
(file, 1)
(for, 1)
(hadoop, 2)
(running, 1)

 Word count problem

 Input: a HDFS folder containing textual files

 Output: number of occurrences of each word
appearing in at least one file of the collection (i.e.,
files of the input directory)

 The only difference with respect to exercise
#1 is given by the input

 Now the input is a collection of textual files

4

 Input files

 Output pairs

5

Toy example
file for Hadoop.
Hadoop running

example.

(another, 1)
(example, 2)
(file, 2)
(for, 2)
(hadoop, 3)
(running, 1)
(toy, 1)

Another file for
Hadoop.

 PM10 pollution analysis

 Input: a (structured) textual file containing the
daily value of PM10 for a set of sensors

▪ Each line of the file has the following format

sensorId,date\tPM10 value (μg/m3)\n

 Output: report for each sensor the number of days
with PM10 above a specific threshold

▪ Suppose to set threshold = 50 μg/m3

▪ Select only the sensors that are associated at least one
time with a PM10 above the threshold

6

 Input file

 Output pairs

7

s1,2016-01-01 20.5
s2,2016-01-01 30.1
s1,2016-01-02 60.2
s2,2016-01-02 20.4
s1,2016-01-03 55.5
s2,2016-01-03 52.5

(s1, 2)
(s2, 1)

 PM10 pollution analysis per city zone
 Input: a (structured) textual file containing the

daily value of PM10 for a set of city zones
▪ Each line of the file has the following format

zoneId,date\tPM10 value (μg/m3)\n

 Output: report for each zone the list of dates
associated with a PM10 value above a specific
threshold
▪ Suppose to set threshold = 50 μg/m3

▪ Report only the zones with at least one date with PM10 above
the threshold

8

 Input file

 Output pairs

9

zone1,2016-01-01 20.5
zone2,2016-01-01 30.1
zone1,2016-01-02 60.2
zone2,2016-01-02 20.4
zone1,2016-01-03 55.5
zone2,2016-01-03 52.5

(zone1, [2016-01-03, 2016-01-02])
(zone2, [2016-01-01])

 Average

 Input: a collection of (structured) textual csv files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: report for each sensor the average value
of PM10

10

 Input file

 Output pairs

11

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

(s1, 45.4)
(s2, 34.3)

 Max and Min

 Input: a collection of (structured) textual csv files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: report for each sensor the maximum and
the minimum value of PM10

12

 Input file

 Output pairs

13

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

(s1, max=60.2_min=20.5)
(s2, max=52.5_min=20.4)

 Inverted index

 Input: a textual file containing a set of sentences

▪ Each line of the file has the following format

sentenceId\tsentence\n

 Output: report for each word w the list of
sentenceIds of the sentences containing w

▪ Do not consider the words “and”, “or”, “not”

14

 Input file

 Output pairs

15

(hadoop, [Sentence#1, Sentence#2, Sentence#3])
(spark, [Sentence#1, Sentence#2])
(java, [Sentence#2])
(big, [Sentence#3])
(data, [Sentence#3])

Sentence#1 Hadoop or Spark
Sentence#2 Hadoop or Spark and Java
Sentence#3 Hadoop and Big Data

 Total income for each month of the year and
Average monthly income per year
 Input: a (structured) textual csv files containing

the daily income of a company
▪ Each line of the files has the following format

date\tdaily income\n

 Output:
▪ Total income for each month of the year

▪ Average monthly income for each year considering only
the months with a total income greater than 0

16

 Input file

 Output

17

2015-11-01 1000
2015-11-02 1305
2015-12-01 500
2015-12-02 750
2016-01-01 345
2016-01-02 1145
2016-02-03 200
2016-02-04 500

(2015-11,2305)
(2015-12, 1250)
(2016-01, 1490)
(2016-02, 700)

(2015, 1777.5)

(2016,1095.0)

 Word count problem

 Input: (unstructured) textual file

 Output: number of occurrences of each word
appearing in the input file

 Solve the problem by using in-mapper
combiners

18

 Input file

 Output pairs

19

Toy example
file for Hadoop.
Hadoop running
example.

(toy, 1)
(example, 2)
(file, 1)
(for, 1)
(hadoop, 2)
(running, 1)

 Total count

 Input: a collection of (structured) textual csv files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: total number of records

20

 Input file

 Output: 6

21

s1,2016-01-01,20.5
s2,2016-01-01,60.2
s1,2016-01-02,30.1
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

 Average
 Input: a collection of (structured) textual csv files

containing the daily value of PM10 for a set of
sensors
▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: report for each sensor the average value
of PM10

 Suppose the number of sensors is equal to 2 and
their ids are s1 and s2

22

 Input file

 Output

23

s1,2016-01-01,20.5
s2,2016-01-01,60.2
s1,2016-01-02,30.1
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

s1, 45.4
s2, 34.3

 Select outliers

 Input: a collection of (structured) textual files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date\tPM10 value (μg/m3)\n

 Output: the records with a PM10 value below a
user provided threshold (the threshold is an
argument of the program)

24

 Input file

 Threshold: 21

 Output

25

s1,2016-01-01 20.5
s2,2016-01-01 60.2
s1,2016-01-02 30.1
s2,2016-01-02 20.4
s1,2016-01-03 55.5
s2,2016-01-03 52.5

s1,2016-01-01 20.5
s2,2016-01-02 20.4

 Top 1 most profitable date

 Input: a (structured) textual csv files containing
the daily income of a company

▪ Each line of the files has the following format

date\tdaily income\n

 Output:

▪ Select the date and income of the top 1 most profitable
date
▪ In case of tie, select the first date

26

 Input file

 Output

27

2015-11-01 1000
2015-11-02 1305
2015-12-01 500
2015-12-02 750
2016-01-01 345
2016-01-02 1145
2016-02-03 200
2016-02-04 500

2015-11-02 1305

 Top 2 most profitable dates

 Input: a (structured) textual csv files containing
the daily income of a company

▪ Each line of the files has the following format

date\tdaily income\n

 Output:

▪ Select the date and income of the top 2 most profitable
dates
▪ In case of tie, select the first 2 dates among the ones associated

with the highest income

28

 Input file

 Output

29

2015-11-01 1000
2015-11-02 1305
2015-12-01 500
2015-12-02 750
2016-01-01 345
2016-01-02 1145
2016-02-03 200
2016-02-04 500

2015-11-02 1305
2016-01-02 1145

 Dictionary

 Input: a collection of news (textual files)

 Output:

▪ List of distinct words occurring in the collection

30

 Input file

 Output

31

Toy example
file for Hadoop.
Hadoop running
example.

example
file
for
hadoop
running
toy

 Dictionary – Mapping word - integer

 Input: a collection of news (textual files)

 Output:

▪ List of distinct words occurring in the collection
associated with a set of unique integers
▪ Each word is associated with a unique integer (and viceversa)

32

 Input file

 Output

33

Toy example
file for Hadoop.
Hadoop running
example.

(example, 1)
(file , 2)
(for , 3)
(hadoop , 4)
(running , 5)
(toy , 6)

 Select maximum temperature for each date

 Input: two structured textual files containing the
temperatures gathered by a set of sensors

▪ Each line of the first file has the following format

sensorID,date,hour,temperature\n

▪ Each line of the second file has the following format

date,hour,temperature,sensorID\n

 Output: the maximum temperature for each date
(considering the data of both input files)

34

 Input files

 Output

35

s1,2016-01-01,14:00,20.5
s2,2016-01-01,14:00,30.2
s1,2016-01-02,14:10,11.5
s2,2016-01-02,14:10,30.2

2016-01-01 30.2
2016-01-02 31.5

2016-01-01,14:00,20.1,s3
2016-01-01,14:00,10.2,s4
2016-01-02,14:15,31.5,s3
2016-01-02,14:15,20.2,s4

 Filter the readings of a set of sensors based
on the value of the measurement

 Input: a set of textual files containing the
temperatures gathered by a set of sensors

▪ Each line of the files has the following format

sensorID,date,hour,temperature\n

 Output:

▪ The lines of the input files associated with a
temperature value greater than 30.0

36

 Input file

 Output file

37

s1,2016-01-01,14:00,20.5
s2,2016-01-01,14:00,30.2
s1,2016-01-02,14:10,11.5
s2,2016-01-02,14:10,30.2

s2,2016-01-01,14:00,30.2
s2,2016-01-02,14:10,30.2

 Filter the readings of a set of sensors based
on the value of the measurement

 Input: a set of textual files containing the
temperatures gathered by a set of sensors

▪ Each line of the files has the following format

sensorID,date,hour,temperature\n

 Output:

▪ The lines of the input files associated with a
temperature value less than or equal to 30.0

38

 Input file

 Output file

39

s1,2016-01-01,14:00,20.5
s2,2016-01-01,14:00,30.2
s1,2016-01-02,14:10,11.5
s2,2016-01-02,14:10,30.2

s1,2016-01-01,14:00,20.5
s1,2016-01-02,14:10,11.5

 Split the readings of a set of sensors based on
the value of the measurement
 Input: a set of textual files containing the

temperatures gathered by a set of sensors
▪ Each line of the files has the following format

sensorID,date,hour,temperature\n

 Output:
▪ a set of files with the prefix “high-temp-” containing the lines

of the input files with a temperature value greater than 30.0

▪ a set of files with the prefix “normal-temp-” containing the
lines of the input files with a temperature value less than or
equal to 30.0

40

 Input file

 Output files

41

s1,2016-01-01,14:00,20.5
s2,2016-01-01,14:00,30.2
s1,2016-01-02,14:10,11.5
s2,2016-01-02,14:10,30.2

s2,2016-01-01,14:00,30.2
s2,2016-01-02,14:10,30.2

s1,2016-01-01,14:00,20.5
s1,2016-01-02,14:10,11.5

high-temp-m-00001 normal-temp-m-00001

 Split the readings of a set of sensors based on
the value of the measurement
 Input: a set of textual files containing the

temperatures gathered by a set of sensors
▪ Each line of the files has the following format

sensorID,date,hour,temperature\n

 Output:
▪ a set of files with the prefix “high-temp-” containing the

temperatures associated with the lines of the input files with
temperature values greater than 30.0

▪ a set of files with the prefix “normal-temp-” containing the
lines of the input files with a temperature value less than or
equal to 30.0

42

 Input file

 Output files

43

s1,2016-01-01,14:00,20.5
s2,2016-01-01,14:00,30.2
s1,2016-01-02,14:10,11.5
s2,2016-01-02,14:10,41.5

30.2
41.5

s1,2016-01-01,14:00,20.5
s1,2016-01-02,14:10,11.5

high-temp-m-00001 normal-temp-m-00001

 Stopword elimination problem

 Input:

▪ A large textual file containing one sentence per line

▪ A small file containing a set of stopwords
▪ One stopword per line

 Output:

▪ A textual file containing the same sentences of the large
input file without the words appearing in the small file

▪ The order of the sentences in the output file can be
different from the order of the sentences in the input file

44

 Input files

 Large file

 Stopword file

This is the first sentence and it contains some stopwords
Second sentence with a stopword here and another here
Third sentence of the stopword example

a
an
and
the

 Output file

This is first sentence it contains some stopwords
Second sentence with stopword here another here
Third sentence of stopword example

 Friends of a specific user
 Input:

▪ A textual file containing pairs of users (one pair per line)
▪ Each line has the format

 Username1,Username2

▪ Each pair represents the fact that Username1 is friend of Username2
(and vice versa)

▪ One username specified as parameter by means of the
command line

 Output:
▪ The friends of the specified username stored in a textual file

▪ One single line with the list of friends

47

 Input file

 Username parameter: User2
 Output file

User1,User2
User1,User3
User1,User4
User2,User5

User1 User5

 Potential friends of a specific user
 Input:

▪ A textual file containing pairs of users (one pair per line)
▪ Each line has the format
 Username1,Username2

▪ Each pair represents the fact that Username1 is friend of Username2 (and
vice versa)

▪ One username specified as parameter by means of the command
line

 Output:
▪ The potential friends of the specified username stored in a textual

file
▪ One single line with the list of potential friends

▪ User1 is a potential friend of User2 if they have at least one friend in
common

49

 Input file

 Username parameter: User2
 Output file

User1,User2
User1,User3
User1,User4
User2,User3
User2,User4
User2,User5
User5,User6

User1 User3 User4 User6

 Potential friends of a specific user

 Solve problem #23 by removing the friends of the
specified user from the list of its potential friends

51

 Input file

 Username parameter: User2
 Output file

User6

User1,User2
User1,User3
User1,User4
User2,User3
User2,User4
User2,User5
User5,User6

 Compute the list of friends for each user

 Input:

▪ A textual file containing pairs of users (one pair per line)
▪ Each line has the format

 Username1,Username2

▪ Each pair represents the fact that Username1 is friend of
Username2 (and vice versa)

 Output:

▪ A textual file containing one line for each user. Each line
contains a user and the list of its friends

53

 Input file

 Output file

User1,User2
User1,User3
User1,User4
User2,User5

User1: User2 User 3 User 4
User2: User1 User5
User3: User1
User4: User1
User5: User2

 Compute the list of potential friends for each
user
 Input:

▪ A textual file containing pairs of users (one pair per line)
▪ Each line has the format
 Username1,Username2

▪ Each pair represents the fact that Username1 is friend of Username2
(and vice versa)

 Output:
▪ A textual file containing one line for each user with at least

one potential friend. Each line contains a user and the list of
its potential friends

▪ User1 is a potential friend of User2 if they have at least one
friend in common

55

 Input file

 Output file

User1: User2 User3 User4 User5
User2: User1 User3 User4 User6
User3: User1 User2 User4 User5
User4: User1 User2 User3 User5
User5: User1 User3 User4
User6: User2

User1,User2
User1,User3
User1,User4
User2,User3
User2,User4
User2,User5
User5,User6

 Word (string) to integer conversion
 Input:

▪ A large textual file containing a list of words per line

▪ The small file dictionary.txt containing the mapping of each
possible word appearing in the first file with an integer. Each
line contain the mapping of a word with an integer and it has
the following format
▪ Word\tInteger\n

 Output:
▪ A textual file containing the content of the large file where

the appearing words are substituted by the corresponding
integers

57

 Input files

 Large textual file

 Small dictionary file

TEST CONVERTION WORD TO INTEGER
SECOND LINE TEST WORD TO INTEGER

1 CONVERTION
2 INTEGER
3 LINE
4 SECOND
5 TEST
6 TO
7 WORD

 Output file

5 1 7 6 2
4 3 5 7 6 2

 Categorization rules

 Input:

▪ A large textual file containing a set of records
▪ Each line contains the information about one single user

▪ Each line has the format

 UserId,Name,Surname,Gender,YearOfBirth,City,Education

▪ A small file with a set of business rules that are used to
assign each user to a category
▪ Each line contains a business rule with the format

 Gender=<value> and YearOfBirth=<value> -> Category

▪ Rules are mutually exclusive

60

 Output:

▪ One record for each user with the following format
▪ The original information about the user plus the category

assigned to the user by means of the business rules

▪ Since the rules are mutually exclusive, there is only one rule
applicable for each user

▪ If no rules is applicable/satisfied by a user, assign the user to the
“Unknown” category

61

 Users

 Business rules

User#1,John,Smith,M,1934,New York,Bachelor
User#2,Paul,Jones,M,1956,Dallas,College
User#3,Jenny,Smith,F,1934,Philadelphia,Bachelor
User#4,Laura,White,F,1926,New York,Doctorate

Gender=M and YearOfBirth=1934 -> Category#1
Gender=M and YearOfBirth=1956 -> Category#3
Gender=F and YearOfBirth=1934 -> Category#2
Gender=F and YearOfBirth=1956 -> Category#3

 Output

User#1,John,Smith,M,1934,New York,Bachelor,Category#1
User#2,Paul,Jones,M,1956,Dallas,College,Category#3
User#3,Jenny,Smith,F,1934,Los Angleses,Bachelor,Category#2
User#4,Laura,White,F,1926,New York,Doctorate,Unknown

 Mapping Question-Answer(s)

 Input:

▪ A large textual file containing a set of questions
▪ Each line contains one question

▪ Each line has the format

 QuestionId,Timestamp,TextOfTheQuestion

▪ A large textual file containing a set of answers
▪ Each line contains one answer

▪ Each line has the format

 AnswerId,QuestionId,Timestamp,TextOfTheAnswer

64

 Output:

▪ One line for each pair (question,answer) with the
following format
▪ QuestionId,TextOfTheQuestion, AnswerId,TextOfTheAnswer

65

 Questions

 Answers

Q1,2015-01-01,What is ..?
Q2,2015-01-03,Who invented ..

A1,Q1,2015-01-02,It is ..
A2,Q2,2015-01-03,John Smith
A3,Q1,2015-01-05,I think it is ..

 Output

Q1,What is ..?,A1,It is ..
Q1,What is ..?,A3,I think it is ..
Q2,Who invented ..,A2,John Smith

 User selection

 Input:

▪ A large textual file containing a set of records
▪ Each line contains the information about one single user

▪ Each line has the format

 UserId,Name,Surname,Gender,YearOfBirth,City,Education

▪ A large textual file with pairs (Userid, MovieGenre)
▪ Each line contains pair Userid, MovieGenre with the format

 Userid,MovieGenre

 It means that UserId likes movies of genre MovieGenre

68

 Output:

▪ One record for each user that likes both Commedia and
Adventure movies

▪ Each output record contains only Gender and
YearOfBirth of a selected user
▪ Gender,YearOfBirth

▪ Duplicate pairs must not be removed

69

 Users

 Likes

User#1,John,Smith,M,1934,New York,Bachelor
User#2,Paul,Jones,M,1956,Dallas,College
User#3,Jenny,Smith,F,1934,Philadelphia,Bachelor

User#1,Commedia
User#1,Adventure
User#1,Drama
User#2,Commedia
User#2,Crime
User#3,Commedia
User#3,Horror
User#3,Adventure

 Output

M,1934
F,1934

