
Introduction to MongoDB

D A N I E L E A P I L E T T I

P O L I T E C N I C O D I T O R I N O

NoSQL Databases

Introduction

•The leader in the NoSQL Document-based databases

•Full of features, beyond NoSQL:

oHigh performance

oHigh availability

oNative scalability

oHigh flexibility

oOpen source

2DATA MANAGEMENT AND VISUALIZATION

DATA MANAGEMENT AND VISUALIZATION 3

Terminology – Approximate mapping

Relational database MongoDB

Table Collection

Record Document

Column Field

Document Data Design

•High-level, business-ready representation of the data

oRecords are stored into BSON Documents

▪ BSON is a binary representation of JSON documents

▪ field-value pairs

▪ may be nested

DATA MANAGEMENT AND VISUALIZATION 4

https://docs.mongodb.com/manual/reference/glossary/#std-term-JSON

Document Data Design
•High-level, business-ready representation of the data

•Mapping into developer-language objects
odate, timestamp, array, sub-documents, etc.

•Field names
oThe field name _id is reserved for use as a primary key; its value must be unique in the

collection, is immutable, possibly autogenerated, and may be of any type other than an array.

oField names cannot contain the null character.

oThe server permits storage of field names that contain dots (.) and dollar signs ($)

oBSON documents may have more than one field with the same name. Most MongoDB
interfaces, however, represent MongoDB with a structure (e.g., a hash table) that does not
support duplicate field names.

oThe maximum BSON document size is 16 megabytes. To store documents larger than the
maximum size, MongoDB provides GridFS.

oUnlike JavaScript objects, the fields in a BSON document are ordered.

DATA MANAGEMENT AND VISUALIZATION 5

Databases and collections.
Create and delete operations (1)

MongoDB

Databases and Collections

DATA MANAGEMENT AND VISUALIZATION 7

•Each instance of MongoDB can manage multiple databases

•Each database is composed of a set of collections

•Each collection contains a set of documents

oThe documents of each collection represent similar “objects”

oHowever, remember that MongoDB is schema-less

oYou are not required to define the schema of the documents a-priori and objects of the same
collections can be characterized by different fields

oStarting in MongoDB 3.2, you can enforce document validation rules for a collection during
update and insert operations.

Databases and Collections

DATA MANAGEMENT AND VISUALIZATION 8

•Show the list of available databases

•Select the database you are interested in

•E.g.

ouse deliverydb

show databases

use <database-name>

Databases and Collections

DATA MANAGEMENT AND VISUALIZATION 9

•Create a database and a collection inside the database

o Select the database by using the command “use <database name>”

o Then, create a collection

▪ MongoDB creates a collection implicitly when the collection is first referenced in a command

•Delete/Drop a database

o Select the database by using “use <database name>”

o Execute the command

E.g.,

use deliverydb;

db.dropDatabase();

db.dropDatabase()

Databases and Collections

DATA MANAGEMENT AND VISUALIZATION 10

•A collection stores documents, uniquely identified by a document “_id”

•Create collections

oThe collection is associated with the current database. Always select the database
before creating a collection.

oOptions related to the collection size and indexing, e.g., to create a capped
collection, or to create a new collection that uses document validation

•E.g.,

o db.createCollection(“authors”, {capped: true});

db.createCollection(<collection name>, <options>);

Databases and Collections

DATA MANAGEMENT AND VISUALIZATION 11

•Show collections

•Drop collections

•E.g.
o db.authors.drop()

show collections

db.<collection_name>.drop()

12

C.R.U.D. Operations

DATA MANAGEMENT AND VISUALIZATION 12

•Delete

•Read

•Update

•Create

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 13

•Insert a single document in a collection

•E.g.,

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

db.<collection name>.insertOne({<set of the field:value pairs of the new document>});

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 14

•Insert a single document in a collection

•E.g.,

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

Field

name

db.<collection name>.insertOne({<set of the field:value pairs of the new document>});

•Insert a single document in a collection

•E.g.

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 15

Field value

db.<collection name>.insertOne({<set of the field:value pairs of the new document>});

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 16

•Insert a single document in a collection

Now people contains a new document representing a user with:

user_id: "abc123",

age: 55

status: "A"

db.<collection name>.insertOne({<set of the field:value pairs of the new document>});

•E.g.,

db.people.insertOne({

user_id: "abc124",

age: 45,

favorite_colors: ["blue", "green"]

});

Now people contains a new document representing a user with:

user_id: "abc124", age: 45 and an array favorite_colors containing
the values "blue" and "green"

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 17

Favorite_colors is

an array

•E.g.,

db.people.insertOne({

user_id: "abc124",

age: 45,

address: {

street: "my street",

city: "my city"

}

});

Example of a document containing a nested document

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 18

Nested document

Create: insert many documents

DATA MANAGEMENT AND VISUALIZATION 19

•Insert multiple documents in a single statement:

db.products.insertMany([

{ user_id: "abc123", age: 30, status: "A"},

{ user_id: "abc456", age: 40, status: "A"},

{ user_id: "abc789", age: 50, status: "B"}

]);

db.<collection name>.insertMany([<comma separated list of documents>]);

•Insert many documents with one single command

•E.g.,

db.people.insertMany([

{user_id: "abc123", age: 55, status: “A”},

{user_id: "abc124", age: 45, favorite_colors: ["blue", "green"]}

]);

Create: insert many documents

DATA MANAGEMENT AND VISUALIZATION 20

db.<collection name>.insertMany([<comma separated list of documents>]);

Delete

DATA MANAGEMENT AND VISUALIZATION 21

•Delete existing data, in MongoDB corresponds to the deletion of
the associated document.

oConditional delete

oMultiple delete

MySQL clause MongoDB operator

DELETE FROM deleteMany()

DATA MANAGEMENT AND VISUALIZATION 22

Delete

MySQL clause MongoDB operator

DELETE FROM deleteMany()

DELETE FROM people

WHERE status = "D"

db.people.deleteMany(

{ status: "D" }

)

DATA MANAGEMENT AND VISUALIZATION 23

Delete

DELETE FROM people db.people.deleteMany({})

MySQL clause MongoDB operator

DELETE FROM deleteMany()

DELETE FROM people

WHERE status = "D"

db.people.deleteMany(

{ status: "D" }

)

GUI for MongoDB

MongoDB Compass

MongoDB Compass

DATA MANAGEMENT AND VISUALIZATION 25

•Visually explore data.

•Available on Linux, Mac, or Windows.

•MongoDB Compass analyzes documents and displays rich
structures within collections.

•Visualize, understand, and work with your geospatial data.

DATA MANAGEMENT AND VISUALIZATION 26

MongoDB Compass

•Connect to local or remote instances of MongoDB.

MongoDB Compass

•Get an overview of the data in list or table format.

DATA MANAGEMENT AND VISUALIZATION 27

MongoDB Compass

•Analyze the documents and their fields.

•Native support for geospatial coordinates.

DATA MANAGEMENT AND VISUALIZATION 28

MongoDB Compass

•Visually build the query conditioning on analyzed fields.

DATA MANAGEMENT AND VISUALIZATION 29

MongoDB Compass

•Autcomplete enabled by default

•Construct the query step by step.

DATA MANAGEMENT AND VISUALIZATION 30

MongoDB Compass

•Analyze query performance and get hints to speed it up.

DATA MANAGEMENT AND VISUALIZATION 31

MongoDB Compass

•Specify contraints to validate data

•Find unconsistent documents.

DATA MANAGEMENT AND VISUALIZATION 32

MongoDB Compass: Aggregation

•Build a pipeline consisting of
multiple aggregation stages

DATA MANAGEMENT AND VISUALIZATION 33

•Define the filter and aggregation
attributes for each operator.

DATA MANAGEMENT AND VISUALIZATION 34

MongoDB Compass: Aggregation stages

DATA MANAGEMENT AND VISUALIZATION 35

MongoDB Compass: Aggregation stages

The _id corresponds to the
GROUP BY parameter in SQL

Other fields contain the
attributes required for each
group.

One group for each “vendor”.

DATA MANAGEMENT AND VISUALIZATION 36

MongoDB Compass: Pipelines

1st stage: grouping by vendor

2nd stage: condition over fields created in the previous
stage (avg_fuel, total).

