
Introduction to MongoDB

D A N I E L E  A P I L E T T I

P O L I T E C N I C O  D I  T O R I N O  

NoSQL Databases



Querying data – find() operation

MongoDB



Query language

DATA MANAGEMENT AND VISUALIZATION 3

•Most of the operations available in SQL language can be expressend in 
MongoDB language

MySQL clause MongoDB operator

SELECT find()

SELECT *

FROM people

db.people.find()



Read data from documents

DATA MANAGEMENT AND VISUALIZATION 4

•Select documents

db.<collection name>.find( {<conditions>}, {<fields of interest>} );



Read data from documents (Filter conditions)

DATA MANAGEMENT AND VISUALIZATION 5

•Select documents

•Select the documents satisfying the specified conditions and specifically 
only the fields specified in fields of interest

o<conditions> are optional

▪ conditions take a document with the form: 

{field1 : <value>, field2 : <value> ... }

▪ Conditions may specify a value or a regular expression 

db.<collection name>.find( {<conditions>}, {<fields of interest>} );



Read data from documents (Project fields)

DATA MANAGEMENT AND VISUALIZATION 6

•Select documents

•Select the documents satisfying the specified conditions and specifically 
only the fields specified in fields of interest

o<fields of interest> are optional

▪ projections take a document with the form: 

{field1 : <value>, field2 : <value> ... }

▪ 1/true to include the field, 0/false to exclude the field 

db.<collection name>.find( {<conditions>}, {<fields of interest>} );



DATA MANAGEMENT AND VISUALIZATION 7

find() operator (1)

SELECT id,

user_id,

status

FROM people

db.people.find(

{ },

{ user_id: 1,     

status: 1 

}

)



DATA MANAGEMENT AND VISUALIZATION 8

find() operator (2)

Where Condition

Select fields

SELECT id,

user_id,

status

FROM people

db.people.find(

{ },

{ user_id: 1,     

status: 1 

}

)

MySQL clause MongoDB operator

SELECT find()



DATA MANAGEMENT AND VISUALIZATION 9

find() operator (3)

MySQL clause MongoDB operator

SELECT find()

WHERE find({<WHERE CONDITIONS>})

SELECT *

FROM people

WHERE status = "A"

db.people.find(

{ status: "A" }

)

Where Condition



DATA MANAGEMENT AND VISUALIZATION 10

find() operator (4)

MySQL clause MongoDB operator

SELECT find()

WHERE find({<WHERE CONDITIONS>})

SELECT user_id, status

FROM people

WHERE status = "A"

db.people.find(

{ status: "A" },

{ user_id: 1, 

status: 1, 

_id: 0 

}

)

Where Condition

Selection fields
By default, the _id field is always returned. 
To remove it, you must explicitly indicate _id: 0



DATA MANAGEMENT AND VISUALIZATION 11

find() operator (5)

MySQL clause MongoDB operator

SELECT find()

WHERE find({<WHERE CONDITIONS>})

db.people.find(

{"address.city":“Rome" }

)

nested document

{ _id: "A",

address: {

street: “Via Torino”, 

number: “123/B”, 

city: “Rome”,

code: “00184”  

}

}



Read data from one document

DATA MANAGEMENT AND VISUALIZATION 12

•Select a single document

•Select one document that satisfies the specified query criteria.

oIf multiple documents satisfy the query, it returns the first one according 
to the natural order which reflects the order of documents on the disk. 

db.<collection name>.findOne( {<conditions>}, {<fields of interest>} );



(No) joins

DATA MANAGEMENT AND VISUALIZATION 13

•No join operator exists (but $lookup)

oYou must write a program that

▪ Selects the documents of the first collection you are interested in

▪ Iterates over the documents returned by the first step, by using the loop statement provided by 
the programming language you are using

▪ Executes one query for each of them to retrieve the corresponding document(s) in the other 
collection

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup


(No) joins

DATA MANAGEMENT AND VISUALIZATION 14

•(no) joins

o Relations among documents/records are provided by

▪ Object_ID (_id), named “Manual reference” in MongoDB, a second query is required

▪ DBRef, a standard approach across collections and databases (check the driver compatibility)

https://docs.mongodb.com/manual/reference/database-references/

{ "$ref" : <value>, "$id" : <value>, "$db" : <value> }

https://docs.mongodb.com/manual/reference/database-references/


DATA MANAGEMENT AND VISUALIZATION 16

Comparison query operators

Name Description

$eq or  : Matches values that are equal to a specified value

$gt Matches values that are greater than a specified value

$gte Matches values that are greater than or equal to a specified 
value

$in Matches any of the values specified in an array

$lt Matches values that are less than a specified value

$lte Matches values that are less than or equal to a specified value

$ne Matches all values that are not equal to a specified value, 
including documents that do not contain the field.

$nin Matches none of the values specified in an array



DATA MANAGEMENT AND VISUALIZATION 17

Comparison operators (>)

MySQL MongoDB Description

> $gt greater than

SELECT *

FROM people

WHERE age > 25

db.people.find(

{ age: { $gt: 25 } }

)



MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

DATA MANAGEMENT AND VISUALIZATION 18

Comparison operators (>=)

SELECT *

FROM people

WHERE age >= 25

db.people.find(

{ age: { $gte: 25 } }

)



MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

DATA MANAGEMENT AND VISUALIZATION 19

Comparison operators (<)

SELECT *

FROM people

WHERE age < 25

db.people.find(

{ age: { $lt: 25 } }

)



MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

<= $lte less equal then

DATA MANAGEMENT AND VISUALIZATION 20

Comparison operators (<=)

SELECT *

FROM people

WHERE age <= 25

db.people.find(

{ age: { $lte: 25 } }

)



MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

<= $lte less equal then

= $eq equal to

The $eq expression is equivalent 

to 

{ field: <value> }.

DATA MANAGEMENT AND VISUALIZATION 21

Comparison operators (=)

SELECT *

FROM people

WHERE age = 25

db.people.find(

{ age: { $eq: 25 } }

)



DATA MANAGEMENT AND VISUALIZATION 22

Comparison operators (!=)

SELECT *

FROM people

WHERE age != 25

db.people.find(

{ age: { $ne: 25 } }

)

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

<= $lte less equal then

= $eq equal to

!= $ne Not equal to



Conditional operators

DATA MANAGEMENT AND VISUALIZATION 23

•To specify multiple conditions, conditional operators are used

•MongoDB offers the same functionalities of MySQL with a different 
syntax.

MySQL MongoDB Description

AND , Both verified

OR $or At least one verified



MySQL MongoDB Description

AND , Both verified

DATA MANAGEMENT AND VISUALIZATION 24

Conditional operators (AND)

SELECT *

FROM people

WHERE status = "A"

AND age = 50

db.people.find(

{ status: "A",

age: 50 }

)



MySQL MongoDB Description

AND , Both verified

OR $or At least one verified

DATA MANAGEMENT AND VISUALIZATION 25

Conditional operators (OR)

SELECT *

FROM people

WHERE status = "A"

OR age = 50

db.people.find(

{ $or: 

[ { status: "A" } , 

{ age: 50 } 

]

}

)



Type of read operations (1)

•Count

•Comparison

•Logical 

DATA MANAGEMENT AND VISUALIZATION 26

db.people. count({ age: 32 })

db.people. find({ age: {$gt: 32 }) // or equivalently with $gte, $lt, $lte, 

db.people.find({ age: {$in: [32, 40] }) // returns all documents having age either 32 or 40

db.people.find({ name: {$not: {$eq: ‘‘Max’’ } } })

db.people.find({ $or: [ {age: 32}, {age: 33} ] } ) 

db.people.find({ age: { $gt: 25, $lte: 50 } }) //returns all documents having age > 25 and age <= 50



Type of read operations (2)

This query returns documents (items) that satisfy both these conditions:

1. Quantity sold either less than 15 or greater than 50

2. Either the item is on sale (field “sale”: true) or its price is less than 5

DATA MANAGEMENT AND VISUALIZATION 27

db.items.find({

$and: [

{$or: [{qty: {$lt: 15}}, {qty: {$gt: 50}} ]},

{$or: [{sale: true}, {price: {$lt: 5}} ]}

]



Type of read operations (3)
• Element

Note:

o Item: null →matches documents that either 

▪ contain the item field whose value is null or 

▪ that do not contain the item field

o Item: {$exists: false} →matches documents that do not contain the item field

•Aggregation → Slides on “Data aggregation”

DATA MANAGEMENT AND VISUALIZATION 28

db.inventory.find( { item: null } ) // equality filter 

db.inventory.find( { item : { $type: 10 } } ) // type filter

db.inventory.find( { item : { $exists: false } } ) // existence filter



Type of read operations (4)

• Embedded Documents

Select all documents where the field size equals the exact document { h: 14, w: 21, uom: "cm" }

To specify a query condition on fields in an embedded/nested document, use dot notation

Dot notation and comparison operator

DATA MANAGEMENT AND VISUALIZATION 29

db.inventory.find( { size: { h: 14, w: 21, uom: "cm" } } )

db.inventory.find( { "size.uom": "in" } )

db.inventory.find( { "size.h": { $lt: 15 } } )



Type of read operations (5)

•Array

o Query for all documents where the field tags value is an array with exactly two specific elements

▪ The following queries return different results, i.e., they are not equivalent

▪ The following queries return the same results, i.e., they are equivalent

DATA MANAGEMENT AND VISUALIZATION 30

db.inventory.find( { tags: ["red", "black"] } ) → Item list order matters!

db.inventory.find( { tags: { $all: ["red", "black"] } } ) → List order does not matter

db.inventory.find( { tags: ["red", "black"] } )

db.inventory.find( { tags: ["black", "red"] } )

db.inventory.find( { tags: { $all: ["red", "black"] } } )

db.inventory.find( { tags: { $all: ["black", "red"] } } )



Type of read operations (6)
o Query for all documents where tags is an array that contains the string "red" as one of its elements

o Query an Array with Compound Filter Conditions on the Array Elements 

o Query for an Array Element that Meets Multiple Criteria

Attention: 

▪ Compound filter: one element of the array can satisfy the greater than 15 condition and another element 
can satisfy the less than 20 condition, or alternatively a single element can satisfy both

▪ elemMatch: one single element of the array must satisfy both

DATA MANAGEMENT AND VISUALIZATION 31

db.inventory.find( { tags: "red" } )

db.inventory.find( { dim_cm: { $gt: 15, $lt: 20 } } )

db.inventory.find( { dim_cm: { $elemMatch: { $gt: 15, $lt: 20 } } } )



Type of read operations (7)
o Query for an Element by the Array Index Position

o Query an Array by Array Length

DATA MANAGEMENT AND VISUALIZATION 32

db.inventory.find( { "dim_cm.0": { $gt: 25 } } )

db.inventory.find( { "tags": { $size: 3 } } )



Cursor

DATA MANAGEMENT AND VISUALIZATION 33

•db.collection.find()gives back a cursor. It can be used to iterate over the 
result or as input for next operations. 

•E.g.,

o cursor.sort()

o cursor.count()

o cursor.forEach() //shell method

o cursor.limit()

o cursor.max()

o cursor.min()

o cursor.pretty()



Cursor: sorting data

DATA MANAGEMENT AND VISUALIZATION 34

•Sort is a cursor method 

•Sort documents

o sort( {<list of field:value pairs>} );

ofield specifies which filed is used to sort the returned documents

ovalue = -1 descending order

oValue = 1 ascending order

•Multiple field: value pairs can be specified

oDocuments are sort based on the first field

o In case of ties, the second specified field is considered



Cursor: sorting data

DATA MANAGEMENT AND VISUALIZATION 35

•Sorting data with respect to a given field in sort() operator

•Returns all documents having status=“A”. The result is sorted in ascending age order

MySQL clause MongoDB operator

ORDER BY sort()

SELECT *

FROM people

WHERE status = "A"

ORDER BY age ASC

db.people.find( 

{ status: "A" } 

).sort( { age: 1 } )



Cursor: sorting data

DATA MANAGEMENT AND VISUALIZATION 36

•Sorting data with respect to a given field in sort() operator

•Returns all documents having status=“A”. The result is sorted in ascending age order

•Returns all documents having status = “A”. The result is sorted in descending age order

MySQL clause MongoDB operator

ORDER BY sort()

SELECT *

FROM people

WHERE status = "A"

ORDER BY age ASC

db.people.find( 

{ status: "A" } 

).sort( { age: 1 } )

SELECT *

FROM people

WHERE status = "A"

ORDER BY age DESC

db.people.find( 

{ status: "A" } 

).sort( { age: -1 } )



DATA MANAGEMENT AND VISUALIZATION 37

Cursor: counting

MySQL clause MongoDB operator

COUNT count()or find().count()

SELECT COUNT(*)

FROM people

db.people.count()

or 
db.people.find().count()



SELECT COUNT(*)

FROM people

db.people.count()

or 
db.people.find().count()

SELECT COUNT(*)

WHERE status = "A"

FROM people

db.people.count(status: "A")}

or

db.people.find({status: "A"}).count()

DATA MANAGEMENT AND VISUALIZATION 38

Cursor: counting

MySQL clause MongoDB operator

COUNT count()or find().count()



SELECT COUNT(*)

FROM people

db.people.count()

or 
db.people.find().count()

SELECT COUNT(*)

WHERE status = "A"

FROM people

db.people.count(status: "A")}

or

db.people.find({status: "A"}).count()

DATA MANAGEMENT AND VISUALIZATION 39

Cursor: counting

MySQL clause MongoDB operator

COUNT count()or find().count()

SELECT COUNT(*)

FROM people

WHERE age > 30

db.people.count( 

{ age: { $gt: 30 } } 

)

Similar to the find() operator, count() can embed conditional statements.



db.people.find({status: "A“}).forEach(

function(myDoc){

print( "user:”+myDoc.name );

})

Cursor: forEach()

DATA MANAGEMENT AND VISUALIZATION 40

•forEach applies a JavaScript function to apply to each document from the cursor.

•Select documents with status=“A” and print the document name. 



Databases and collections. 
Update operations (3)

MongoDB



Document update

•Back at the C.R.U.D. operations, we can now see how documents 
can be updated using: 

o<filter> = filter condition. It specifies which documents must be updated

o<update> = specifies which fields must be updated and their new values

o<options> = specific update options

DATA  MANAGEMENT AND VISUALIZATION 42

db.collection.updateOne(<filter>, <update>, <options>)

db.collection.updateMany(<filter>, <update>, <options>)



Document update
•E.g.,

db.inventory.updateMany(

{ "qty": { $lt: 50 } },

{

$set: { "size.uom": "in", status: "P" },

$currentDate: { lastModified: true }

}

)

oThis operation updates all documents with qty<50

oIt sets the value of the size.uom field to "in", the value of the status field to 
"P", and the value of the lastModified field to the current date.

DATA  MANAGEMENT AND VISUALIZATION 43



Updating data

•Tuples to be updated should be selected using the WHERE 
statements

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>} }

)

DATA  MANAGEMENT AND VISUALIZATION 44



Updating data

DATA  MANAGEMENT AND VISUALIZATION 45

UPDATE people

SET status = "C"

WHERE age > 25

db.people.updateMany(

{age: { $gt: 25 } },

{$set: { status: "C"}}

)

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>}}

)



Updating data

UPDATE people

SET age = age + 3

WHERE status = "A"

db.people.updateMany(

{ status: "A" } ,

{ $inc: { age: 3 } }

)

The $inc operator increments a field by a specified value

UPDATE people

SET status = "C"

WHERE age > 25

db.people.updateMany(

{age: { $gt: 25 } },

{$set: { status: "C"}}

)

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>}}

)

DATA  MANAGEMENT AND VISUALIZATION 46

https://docs.mongodb.com/manual/reference/operator/update/inc/#up._S_inc


Data aggregation

MongoDB



General concepts

•Documents enter a multi-stage pipeline that transforms the documents of a 
collection into an aggregated result

•Pipeline stages can appear multiple times in the pipeline

o exceptions $out, $merge, and $geoNear stages 

•Pipeline expressions can only operate on the current document in the pipeline and 
cannot refer to data from other documents: expression operations provide in-memory 
transformation of documents (max 100 Mb of RAM per stage).

•Generally, expressions are stateless and are only evaluated when seen by the 
aggregation process with one exception: accumulator expressions used in the $group 
stage (e.g. totals, maximums, minimums, and related data). 

•The aggregation pipeline provides an alternative to map-reduce and may be the 
preferred solution for aggregation tasks since MongoDB introduced the $accumulator 
and $function aggregation operators starting in version 4.4

DATA MANAGEMENT AND VISUALIZATION 48



DATA MANAGEMENT AND VISUALIZATION 49

Aggregation Framework

SQL MongoDB

WHERE $match

GROUP BY $group

HAVING $match

SELECT $project

ORDER BY $sort

//LIMIT $limit

SUM $sum

COUNT $sum



Aggregation pipeline

DATA MANAGEMENT AND VISUALIZATION 50

•Aggregate functions can be applied to collections to group documents

oCommon stages: $match, $group .. 

oThe aggregate function allows applying aggregating functions (e.g. sum, average, ..)

o It can be combined with an initial definition of groups based on the grouping fields

db.collection.aggregate( { <set of stages> })



Aggregation example (1)

DATA MANAGEMENT AND VISUALIZATION 51

db.people.aggregate( [

{ $group: { _id: null,

mytotal: { $sum: "$age" },

mycount: { $sum: 1 }

}

}

] )

•Considers all documents of people and 

o sum the values of their age

o sum a set of ones (one for each document)

•The returned value is associated with a field called “mytotal” and a field “mycount”



Aggregation example (2)

DATA MANAGEMENT AND VISUALIZATION 52

db.people.aggregate( [

{ $group: { _id: null,

myaverage: { $avg: "$age" },

mytotal: { $sum: "$age" }

}

}

] )

oConsiders all documents of people and computes

▪ sum of age

▪ average of age



Aggregation example (3)

DATA MANAGEMENT AND VISUALIZATION 53

db.people.aggregate( [

{ $match: {status: "A"} } ,   

{ $group: { _id: null,

count: { $sum: 1 } 

}

}

] )

oCounts the number of documents in people with status equal to “A”

Where conditions



DATA MANAGEMENT AND VISUALIZATION 54

Aggregation in “Group By”

MySQL clause MongoDB operator

GROUP BY aggregate($group)

SELECT status,

AVG(age) AS total

FROM people

GROUP BY status

db.orders.aggregate( [

{

$group: {

_id: "$status",

total: { $avg: "$age" }

}

}

] )



DATA MANAGEMENT AND VISUALIZATION 55

Aggregation in “Group By”

MySQL clause MongoDB operator

GROUP BY aggregate($group)

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

db.orders.aggregate( [

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

}

] )

Group field



DATA MANAGEMENT AND VISUALIZATION 56

Aggregation in “Group By”

MySQL clause MongoDB operator

GROUP BY aggregate($group)

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

db.orders.aggregate( [

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

}

] )

Group field

Aggregation function



MySQL clause MongoDB operator

HAVING aggregate($group, $match)

DATA MANAGEMENT AND VISUALIZATION 57

Aggregation in “Group By + Having”

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

HAVING total > 1000

db.orders.aggregate( [

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

},

{ $match: { total: { $gt: 1000 } } }

] )



MySQL clause MongoDB operator

HAVING aggregate($group, $match)

DATA MANAGEMENT AND VISUALIZATION 58

Aggregation in “Group By + Having”

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

HAVING total > 1000

db.orders.aggregate( [

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

},

{ $match: { total: { $gt: 1000 } } }

] )

Group stage: Specify 
the aggregation field  
and the aggregation 
function



MySQL clause MongoDB operator

HAVING aggregate($group, $match)

DATA MANAGEMENT AND VISUALIZATION 59

Aggregation in “Group By + Having”

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

HAVING total > 1000

db.orders.aggregate( [

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

},

{ $match: { total: { $gt: 1000 } } }

] )

Group stage: Specify 
the aggregation field  
and the aggregation 
function

Match Stage: specify 
the condition as in 
HAVING



DATA MANAGEMENT AND VISUALIZATION 60

Aggregation at a glance



Pipeline stages (1)

Stage Description

$addFields Adds new fields to documents. Reshapes each document by adding new fields to 
output documents that will contain both the existing fields from the input documents 
and the newly added fields.

$bucket Categorizes incoming documents into groups, called buckets, based on a specified 
expression and bucket boundaries. On the contrary, $group creates a “bucket” for 
each value of the group field.

$bucketAuto Categorizes incoming documents into a specific number of groups, called buckets, 
based on a specified expression. Bucket boundaries are automatically determined in 
an attempt to evenly distribute the documents into the specified number of buckets.

$collStats Returns statistics regarding a collection or view (it must be the first stage)

$count Passes a document to the next stage that contains a count of the input number of 
documents to the stage (same as $group+$project)

DATA MANAGEMENT AND VISUALIZATION 61



Pipeline stages (2)

Stage Description

$facet Processes multiple aggregation pipelines within a single stage on the same set of 
input documents. Enables the creation of multi-faceted aggregations capable of 
characterizing data across multiple dimensions. Input documents are passed to the 
$facet stage only once, without needing multiple retrieval.

$geoNear Returns an ordered stream of documents based on the proximity to a geospatial 
point. The output documents include an additional distance field. It must in the first 
stage only.

$graphLookup Performs a recursive search on a collection. To each output document, adds a new 
array field that contains the traversal results of the recursive search for that 
document.

DATA MANAGEMENT AND VISUALIZATION 62



Example

•The $graphLookup operation recursively matches on the 
reportsTo and name fields in the employees collection, returning 
the reporting hierarchy for each person.

•Returns a list of documents such as

{

"_id" : 5,

"name" : "Asya",

"reportsTo" : "Ron",

"reportingHierarchy" : [

{ "_id" : 1, "name" : "Dev" },

{ "_id" : 2, "name" : "Eliot", "reportsTo" : "Dev" },

{ "_id" : 3, "name" : "Ron", "reportsTo" : "Eliot" }

]

}

db.employees.aggregate( [

{

$graphLookup: {

from: "employees",

startWith: "$reportsTo",

connectFromField: "reportsTo",

connectToField: "name",

as: "reportingHierarchy"

}

}

] )

original 

document

DATA MANAGEMENT AND VISUALIZATION 63



Pipeline stages (3)

Stage Description

$group Groups input documents by a specified identifier expression and applies the 
accumulator expression(s), if specified, to each group. Consumes all input documents 
and outputs one document per each distinct group. The output documents only 
contain the identifier field and, if specified, accumulated fields.

$indexStats Returns statistics regarding the use of each index for the collection.

$limit Passes the first n documents unmodified to the pipeline where n is the specified limit. 
For each input document, outputs either one document (for the first n documents) or 
zero documents (after the first n documents).

$lookup Performs a join to another collection in the same database to filter in documents from 
the “joined” collection for processing. To each input document, the $lookup stage 
adds a new array field whose elements are the matching documents from the “joined” 
collection. The $lookup stage passes these reshaped documents to the next stage.

DATA MANAGEMENT AND VISUALIZATION 64



Pipeline stages (4)

Stage Description

$match Filters the document stream to allow only matching documents to pass 
unmodified into the next pipeline stage. $match uses standard MongoDB queries. 
For each input document, outputs either one document (a match) or zero 
documents (no match).

$merge Writes the resulting documents of the aggregation pipeline to a collection. The 
stage can incorporate (insert new documents, merge documents, replace 
documents, keep existing documents, fail the operation, process documents with 
a custom update pipeline) the results into an output collection. To use 
the $merge stage, it must be the last stage in the pipeline.

$out Writes the resulting documents of the aggregation pipeline to a collection. To use 
the $out stage, it must be the last stage in the pipeline.

$project Reshapes each document in the stream, such as by adding new fields or removing 
existing fields. For each input document, outputs one document.

DATA MANAGEMENT AND VISUALIZATION 65



Pipeline stages (5)

Stage Description

$sample Randomly selects the specified number of documents from its input.

$set Adds new fields to documents. Similar to $project, $set reshapes each document in 
the stream; specifically, by adding new fields to output documents that contain both 
the existing fields from the input documents and the newly added fields. $set is an 
alias for $addFields stage. If the name of the new field is the same as an existing field 
name (including _id), $set overwrites the existing value of that field with the value of 
the specified expression.

$skip Skips the first n documents where n is the specified skip number and passes the 
remaining documents unmodified to the pipeline. For each input document, outputs 
either zero documents (for the first n documents) or one document (if after the 
first n documents).

$sort Reorders the document stream by a specified sort key. Only the order changes; the 
documents remain unmodified. For each input document, outputs one document.

DATA MANAGEMENT AND VISUALIZATION 66



Pipeline stages (6)

Stage Description

$sortByCount Groups incoming documents based on the value of a specified expression, then computes the 
count of documents in each distinct group.

$unset Removes/excludes fields from documents.

$unwind Deconstructs an array field from the input documents to output a document for each element. 
Each output document replaces the array with an element value. For each input document, 
outputs n documents where n is the number of array elements and can be zero for an empty 
array.

DATA MANAGEMENT AND VISUALIZATION 67


