
Introduction to data replication
and the CAP theorem

D A N I E L E A P I L E T T I

P O L I T E C N I C O D I T O R I N O

Distributed Data Management

Replication

Same data
in different places

DATA MANAGEMENT AND VISUALIZATION 2

Replication

•Same data

oportions of the whole dataset (chunks)

•in different places

o local and/or remote servers, clusters, data centers

•Goals

oRedundancy helps surviving failures (availability)

oBetter performance

•Approaches

oMaster-Slave replication

oA-Synchronous replication

DATA MANAGEMENT AND VISUALIZATION 3

Master-Slave replication

•Master-Slave

o A master server takes all the writes, updates,
inserts

o One or more Slave servers take all the reads (they
can’t write)

o Only read scalability

o The master is a single point of failure

•Some NoSQLs (e.g., CouchDB) support Master-
Master replica

Master

Slave Slave Slave Slave

… …

Only read operations

Read-write operations

DATA MANAGEMENT AND VISUALIZATION 4

Synchronous replication
o Before committing a transaction, the Master waits for (all) the Slaves to commit

o Similar in concept to the 2-Phase Commit in relational databases

o Performance killer, in particular for replication in the cloud

o Trade-off: wait for a subset of Slaves to commit, e.g., the majority of them

Master

Slave Slave Slave Slave

… …

Replicate

It’s ready to commit
new transaction

Wait for all slaves

DATA MANAGEMENT AND VISUALIZATION 5

Asynchronous replication
o The Master commits locally, it does not wait for any Slave

o Each Slave independently fetches updates from Master, which may fail…

▪ IF no Slave has replicated, then you’ve lost the data committed to the Master

▪ IF some Slaves have replicated and some haven’t, then you have to reconcile

o Faster and unreliable

Master

Slave Slave Slave Slave

… …

Replicate

Can commit other
transactions

DATA MANAGEMENT AND VISUALIZATION 6

Distributed databases

Different autonomous
machines, working

together to manage the
same dataset

DATA MANAGEMENT AND VISUALIZATION 7

Key features of distributed databases

•There are 3 typical problems in distributed databases:

oConsistency

▪All the distributed databases provide the same data to the application

oAvailability

▪Database failures (e.g., master node) do not prevent survivors from continuing to
operate

oPartition tolerance

▪The system continues to operate despite arbitrary message loss,
when connectivity failures cause network partitions

DATA MANAGEMENT AND VISUALIZATION 8

•The CAP theorem, also known as Brewer's theorem,
states that it is impossible for a distributed system to
simultaneously provide all three of the previous
guarantees

•The theorem began as a conjecture made by
University of California in 1999-2000

o Armando Fox and Eric Brewer, “Harvest, Yield and Scalable
Tolerant Systems”, Proc. 7th Workshop Hot Topics in
Operating Systems (HotOS 99), IEEE CS, 1999, pg. 174-178.

•In 2002 a formal proof was published,
establishing it as a theorem

o Seth Gilbert and Nancy Lynch, “Brewer's conjecture and
the feasibility of consistent, available, partition-tolerant
web services”, ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51-59

•In 2012, a follow-up by Eric Brewer, “CAP twelve years
later: How the "rules" have changed”

o IEEE Explore, Volume 45, Issue 2 (2012), pg. 23-29.

CAP Theorem

http://guide.couchdb.org/editions/1/en/consistency.html#figure/1

DATA MANAGEMENT AND VISUALIZATION 9

http://guide.couchdb.org/editions/1/en/consistency.html#figure/1

•The easiest way to understand CAP is to think of two
nodes on opposite sides of a partition.

•Allowing at least one node to update state will cause the
nodes to become inconsistent, thus forfeiting C.

•If the choice is to preserve consistency, one side of the
partition must act as if it is unavailable, thus forfeiting A.

•Only when no network partition exists, is it possible to
preserve both consistency and availability, thereby
forfeiting P.

•The general belief is that for wide-area systems,
designers cannot forfeit P and therefore have a difficult
choice between C and A.

CAP Theorem

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

DATA MANAGEMENT AND VISUALIZATION 10

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

CAP Theorem

http://blog.flux7.com/blogs/nosql/cap-theorem-why-does-it-matter

DATA MANAGEMENT AND VISUALIZATION 11

http://blog.flux7.com/blogs/nosql/cap-theorem-why-does-it-matter

CA without P (local consistency)

•Partitioning (communication breakdown) causes a failure.

•We can still have Consistency and Availability of the data shared by agents within
each Partition, by ignoring other partitions.

o Local rather than global consistency / availability

•Local consistency for a partial system, 100% availability for the partial system, and no
partitioning does not exclude several partitions from existing with their own “internal”
CA.

•So partitioning means having multiple independent systems with 100% CA that do
not need to interact.

DATA MANAGEMENT AND VISUALIZATION 12

CP without A (transaction locking)

•A system is allowed to not answer requests at all (turn off “A”).

•We claim to tolerate partitioning/faults, because we simply block all responses if a
partition occurs, assuming that we cannot continue to function correctly without the
data on the other side of a partition.

•Once the partition is healed and consistency can once again be verified, we can
restore availability and leave this mode.

•In this configuration there are global consistency, and global correct behaviour in
partitioning is to block access to replica sets that are not in synch.

•In order to tolerate P at any time, we must sacrifice A at any time for global
consistency.

•This is basically the transaction lock.

DATA MANAGEMENT AND VISUALIZATION 13

AP without C (best effort)

•If we don't care about global consistency (i.e. simultaneity), then every part of the
system can make available what it knows.

•Each part might be able to answer someone, even though the system as a whole has
been broken up into incommunicable regions (partitions).

•In this configuration “without consistency” means without the assurance of global
consistency at all times.

DATA MANAGEMENT AND VISUALIZATION 14

A consequence of CAP

“Each node in a system should be able to make decisions purely based on local state. If
you need to do something under high load with failures occurring and you need to reach
agreement, you’re lost. If you’re concerned about scalability, any algorithm that forces

you to run agreement will eventually become your bottleneck. Take that as a given.”

Werner Vogels, Amazon CTO and Vice President

DATA MANAGEMENT AND VISUALIZATION 15

Beyond CAP

•The "2 of 3" view is misleading on several fronts.

•First, because partitions are rare, there is little reason to forfeit C or A when the
system is not partitioned.

•Second, the choice between C and A can occur many times within the same system at
very fine granularity; not only can subsystems make different choices, but the choice
can change according to the operation or even the specific data or user involved.

•Finally, all three properties are more continuous than binary.

o Availability is obviously continuous from 0 to 100 percent

o There are also many levels of consistency

o Even partitions have nuances, including disagreement within the system about whether a partition
exists

DATA MANAGEMENT AND VISUALIZATION 16

How the rules have changed

•Any networked shared-data system can have only 2 of 3 desirable properties at the
same time

•Explicitly handling partitions, designers can optimize consistency and availability,
thereby achieving some trade-off of all three

•CAP prohibits only a tiny part of the design space:

o perfect availability (A) and consistency (C)

o in the presence of partitions (P), which are rare

•Although designers need to choose between consistency and availability when
partitions are present, there is an incredible range of flexibility for handling partitions
and recovering from them

•Modern CAP goal should be to maximize combinations of
consistency (C) and availability (A) that make sense for the specific application

DATA MANAGEMENT AND VISUALIZATION 17

ACID

•The four ACID properties are:

o Atomicity (A) All systems benefit from atomic operations, the database transaction must completely
succeed or fail, partial success is not allowed

o Consistency (C) During the database transaction, the database progresses from a valid state to
another. In ACID, the C means that a transaction pre-serves all the database rules, such as unique
keys. In contrast, the C in CAP refers only to single copy consistency.

o Isolation (I) Isolation is at the core of the CAP theorem: if the system requires ACID isolation, it can
operate on at most one side during a partition, because a client’s transaction must be isolated from
other client’s transaction

o Durability (D) The results of applying a transaction are permanent, it must persist after the
transaction completes, even in the presence of failures.

DATA MANAGEMENT AND VISUALIZATION 18

BASE

•Basically Available: the system provides availability, in terms of the CAP theorem

•Soft state: indicates that the state of the system may change over time, even without
input, because of the eventual consistency model.

•Eventual consistency: indicates that the system will become consistent over time,
given that the system doesn't receive input during that time

•Example: DNS – Domain Name Servers

o DNS is not multi-master

DATA MANAGEMENT AND VISUALIZATION 19

ACID versus BASE

•ACID and BASE represent two design philosophies at opposite ends of the
consistency-availability spectrum

•ACID properties focus on consistency and are the traditional approach of databases

•BASE properties focus on high availability and to make explicit both the choice and
the spectrum

•BASE: Basically Available, Soft state, Eventually consistent, work well in the presence
of partitions and thus promote availability

Conflict detection and resolution

An example from a
notable NoSQL

database

•There are two customers, A and B

•A books a hotel room, the last available
room

•B does the same, on a different node of
the system, which was not consistent

Conflict resolution problem

•The hotel room document is affected by
two conflicting updates

•Applications should solve the conflict with
custom logic (it’s a business decision)

•The database can

o Detect the conflict

o Provide a local solution, e.g., latest version is
saved as the winning version

Conflict resolution problem

Conflict

•CouchDB guarantees that each instance that sees the same
conflict comes up with the same winning and losing revisions.

•It does so by running a deterministic algorithm to pick the
winner.

oThe revision with the longest revision history list becomes the winning
revision.

oIf they are the same, the _rev values are compared in ASCII sort order,
and the highest wins.

