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MapReduce
•Published in 2004 by Google

o J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, OSDI'04: Sixth 
Symposium on Operating System Design and Implementation, San Francisco, CA, December, 2004

o used to rewrite the production indexing system with 24 MapReduce operations (in August 2004 alone, 3288 
TeraBytes read, 80k machine-days used, jobs of 10’ avg)

•Distributed programming model

•Process large data sets with parallel algorithms on a cluster of common machines, e.g., PCs

•Great for parallel jobs requiring pieces of computations to be executed on all data records

•Move the computation (algorithm) to the data (remote node, PC, disk)

•Inspired by the map and reduce functions used in functional programming

o In functional code, the output value of a function depends only on the arguments that are passed to the function, 
so calling a function f twice with the same value for an argument x produces the same result f(x) each time; this is 
in contrast to procedures depending on a local or global state, which may produce different results at different 
times when called with the same arguments but a different program state.
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MapReduce: working principles

•Consists of two functions, a Map and a Reduce

oThe Reduce is optional

oAdditional shuffling / finalize steps, implementation specific

•Map function 

oProcess each record (document) → INPUT

oReturn a list of key-value pairs →OUTPUT

•Reduce function

ofor each key, reduces the list of its values, returned by the map, to a “single” value 

oReturned value can be a complex piece of data, e.g., a list, tuple, etc.
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Map

•Map functions are called once for each document:

function(doc) {

emit(key1, value1); // key1 = fk1(doc); value1 = fv1(doc)

emit(key2, value2); // key2 = fk2(doc); value2 = fv2(doc)

}

•The map function can choose to skip the document altogether or emit one or more 
key/value pairs

•Map function may not depend on any information outside the document

o This independence is what allows map-reduces to be generated incrementally and in parallel

o Some implementations allow global / scope variables
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Map example

•Example database, a collection of docs describing university exam records

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8
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Map example (1)
•List of exams and corresponding marks

Function(doc){

emit(doc.exam, doc.mark);

} Result:

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

doc.id Key Value

6 Bioinformatics 30

2 Computer architectures 24

3 Computer architectures 27

1 Database 29

4 Database 26

8 Database 25

5 Software engineering 21

7 Software engineering 18

Key Value
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Map example (2)
•Ordered list of exams, academic year, and date, and select their mark

Function(doc) {
key = [doc.exam, doc.AYear]
value = doc.mark
emit(key, value);

}
Result:

doc.id Key Value

6 [Bioinformatics, 2015-16] 30

2 [Computer architectures, 2015-16] 24

3 [Computer architectures, 2015-16] 27

4 [Database, 2014-15] 26

8 [Database, 2014-15] 25

1 [Database, 2015-16] 29

5 [Software engineering, 2014-15] 21

7 [Software engineering, 2015-16] 18

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8
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Map example (3)
•Ordered list of students, with mark and CFU for each exam

Function(doc) {
key = doc.student
value = [doc.mark, doc.CFU]
emit(key, value);

}
Result:

doc.i
d

Key Value

1 S123456 [29, 8]

2 S123456 [24, 10]

5 S123456 [21, 8]

6 S123456 [30, 6]

3 S654321 [27, 10]

4 S654321 [26, 8]

7 S654321 [18, 8]

8 s987654 [25, 8]

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

DATA MANAGEMENT AND VISUALIZATION 8



Reduce

•Documents (key-value pairs) emitted by the map function are 
sorted by key

o some platforms (e.g. Hadoop) allow you to specifically define a shuffle phase to manage the 
distribution of map results to reducers spread over different nodes, thus providing a fine-grained 
control over communication costs

•Reduce inputs are the map outputs: a list of key-value documents

•Each execution of the reduce function returns one key-value document

•The most simple SQL-equivalent operations performed by means of reducers are 
«group by» aggregations, but reducers are very flexible functions that can execute 
even complex operations

•Re-reduce: reduce functions can be called on their own results (in some 
implementations)
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•Map - List of exams and corresponding
mark

Function(doc){

emit(doc.exam, doc.mark);

}

•Reduce - Compute the average mark for 
each exam

Function(key, values){

S = sum(values);

N = len(values);

AVG = S/N;

return AVG;

}

MapReduce example (1)

Key Value

Bioinformatics 30

Computer
architectures

25.5

Database 26.67

Software 
engineering

19.5

doc.id Key Value

6 Bioinformatics 30

2 Computer architectures 24

3 Computer architectures 27

1 Database 29

4 Database 26

8 Database 25

5 Software engineering 21

7 Software engineering 18

Map Reduce

The reduce function receives:
• key=Bioinformatics, values=[30]
• …
• key=Database, values=[29,26,25]
• …

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8
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•Map - List of exams and corresponding mark

Function(doc){

emit(

[doc.exam, doc.AYear],

doc.mark

);

}

•Reduce - Compute the average mark for each
exam and academic year

Function(key, values){

S = sum(values);

N = len(values);

AVG = S/N;

return AVG;

}

MapReduce example (2)

doc.id Key
Valu

e

6 Bioinformatics, 2015-16 30

2 Computer architectures, 2015-16 24

3 Computer architectures, 2015-16 27

4 Database, 2014-15 26

8 Database, 2014-15 25

1 Database, 2015-16 29

5 Software engineering, 2014-15 21

7 Software engineering, 2015-16 18

Key
Valu

e

[Bioinformatics, 2015-16] 30

[Computer architectures, 
2015-16]

25.5

[Database, 2014-15] 25.5

[Database, 2015-16] 29

[Software engineering, 2014-15] 21

[Software engineering, 2015-16] 18

The reduce function receives:
• key=[Database, 2014-15], 

values=[26,25]
• key=[Database, 2015-16], values=[29]
• …

Reduce is the same as before

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Map Reduce
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Rereduce in CouchDB
•Average mark the for each exam (group level=1)

doc.i
d

Key Value

6 Bioinformatics, 2015-16 30

2
Computer architectures, 

2015-16
24

3
Computer architectures, 

2015-16
27

4
Database, 2014-1015

26

8
Database, 2014-15

25

1 Database, 2015-16 29

5 Software engineering, 2014-15 21

7 Software engineering, 2015-16 18

Key Value

[Bioinformatics, 2015-16] 30

[Computer architectures, 
2015-16]

25.5

[Database, 2014-15] 25.5

[Database, 2015-16] 29

[Software engineering, 2014-
15]

21

[Software engineering, 2015-
16]

18

Id: 3
Exam: Computer 
architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer 
architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software 
engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software 
engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

Map ReduceDB

Key Value

Bioinformatics 30

Computer architectures 25.5

Database 27.25

Software engineering 19.5

Rereduce
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MapReduce example (3a)

Average CFU-weighted mark for each student

•Map

•Reduce

doc.i
d

Key Value

Map

Key Value

Reduce
The reduce function receives:
• key= 

values=
• …
• key= 
• values=

The reduce function results:
• key= 

values=
• …
• key= 
• values=

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8
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Key Value

S123456 25.6

S654321 23.9

s987654 25

doc.i
d

Key Value

1 S123456 [29, 8]

2 S123456 [24, 10]

5 S123456 [21, 8]

6 S123456 [30, 6]

3 S654321 [27, 10]

4 S654321 [26, 8]

7 S654321 [18, 8]

8 s987654 [25, 8]

MapReduce example (3a)
•Map - Ordered list of students, with mark and CFU for each student

Function(doc) {

key = doc.student

value = [doc.mark, doc.CFU]

emit(key, value);

}

•Reduce - Average CFU-weighted mark for each student

Function(key, values){

S = sum([ X*Y for X,Y in values ]);

N = sum([ Y for X,Y in values ]);

AVG = S/N;

return AVG;

}

Map Reduce

The reduce function receives:
• key=S123456, 

values=[(29,8), (24,10), (21,8)…]
• …
• key=s987654, values=[(25,8)]

key = S123456, 
values = [(29,8), (24,10), (21,8)…]
X = 29, 24, 21, … →mark
Y = 8, 10, 8, … →CFU
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MapReduce example (3b)
•Compute the number of exams for each student

•Technological view of data distribution among different nodes

Id: 3 Exam: Computer architectures Student: 
s654321 AYear: 2015-16 Date: 26-01-2016 Mark=27 
CFU=10

Id: 4 Exam: Database Student: s654321
AYear: 2014-15 Date: 26-07-2015 Mark=26 CFU=8

Id: 1 Exam: Database Student: s123456 
AYear: 2015-16 Date: 31-01-2016  Mark=29 CFU=8

Id: 2 Exam: Computer architectures Student: 
s123456 AYear: 2015-16 Date: 03-07-2015 Mark=24 
CFU=10

Id: 5 Exam: Software engineering Student: s123456
AYear: 2014-15 Date: 14-02-2015 Mark=21 CFU=8

Id: 6 Exam: Bioinformatics Student: s123456
AYear: 2015-16 Date: 18-09-2016 Mark=30 CFU=6

Id: 7 Exam: Software engineering Student: s654321
AYear: 2015-16 Date: 28-06-2016 Mark=18 CFU=8

Id: 8 Exam: Database Student: s987654
AYear: 2014-15 Date: 28-06-2015 Mark=25 CFU=8

DB
doc.i

d
Key Value

1 S123456 [29, 1]

2 S123456 [24, 1]

5 S123456 [21, 1]

6 S123456 [30, 1]

3 S654321 [27, 1]

4 S654321 [26, 1]

7 S654321 [18, 1]

8 s987654 [25, 1]

Map

Key Value

S123456 3

S123456 1

S654321 3

s987654 1

Reduce

Key Value

S123456 4

S654321 3

s987654 1

Rereduce
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Map Reduce in mongoDB

MongoDB



Aggregation operations in MongoDB

•Aggregation operations 

o group values from multiple documents together

o can perform a variety of operations on the grouped data 

o return an aggregated result

•MongoDB provides three ways to perform aggregation: 

o the aggregation pipeline

▪ exploits native operations within MongoDB, 

▪ is the preferred method for data aggregation in MongoDB

o the map-reduce function

▪ since MongoDB 5.0 the map-reduce operation is deprecated

o single-purpose aggregation methods

https://docs.mongodb.com/manual/aggregation/
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•Commands 

o db.collection.estimatedDocumentCount(), 

o db.collection.count() 

o db.collection.distinct()

•Features

o aggregate documents from a single 
collection

o simple access to common aggregation 
processes

o less flexible and powerful than aggregation 
pipeline and map-reduce

Single-Purpose Aggregation Operations
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Comparison of aggregation operations
•Map Reduce

o Besides grouping operations, can perform complex aggregation tasks 

▪ Custom map, reduce and finalize JavaScript functions offer flexibility

o Incremental aggregation on continuously growing datasets

•Aggregation pipeline

o Performance and usability

o Virtually infinite pipeline of transformations

o Map-reduce operations can be rewritten using aggregation pipeline operators, e.g., $group, $merge

o For map-reduce operations that require custom functionality, MongoDB provides the $accumulator 
and $function aggregation operators starting in version 4.4. Use these operators to define custom 
aggregation expressions in JavaScript.

•For most aggregation operations, the Aggregation Pipeline provides better 
performance and more coherent interface
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•custom JavaScript functions

•db.collection.mapReduce( {

o <map>, 

o <reduce>, 

o <finalize>, 

o <query>, 

o <out>, 

o <sort>, 

o <limit>, 

o ...} )

MongoDB: Map-Reduce

DATA MANAGEMENT AND VISUALIZATION 20



1. MongoDB applies the map phase to 
each input document (i.e. the 
documents in the collection that 
match the query condition)

2. The map function emits
key-value pairs

3. For those keys that have multiple 
values, MongoDB applies 
the reduce phase, which collects and 
condenses the aggregated data

4. MongoDB then stores the results in a 
collection

MongoDB: Map-Reduce
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MongoDB: Map-Reduce

•Map

o Requires emit(key, value) to map each 
value with a key

o It refers to the current document as this

•Reduce

o Groups all document with the same key

o These functions must be associative and 
commutative and must return an object of 
the same type of value emitted by Map
(multiple calls to reduce function on the 
same key)

•Out

o Specifies where to output the map-reduce 
query results 

▪ Either a collection

▪ Or an inline result
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MongoDB: Map-Reduce

•Finalize (optional) 

o Follows the reduce method and modifies the output

•Query (optional)

o specifies the selection criteria for selecting the input documents to the map function

•Sort (optional)

o specifies the sort criteria for the input documents

o useful for optimization, e.g., specify the sort key to be the same as the emit key so that there are 
fewer reduce operations. 

o the sort key must be in an existing index

•Limit(optional)

o specifies the maximum number of input documents 
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•E.g.,

db.orders.mapReduce(

function() {

emit(this.cust_id, this.amount);

}, 

function(key, values) {

return Array.sum(values)

};

{

query: {status: “A”},

out: “order_totals”

}

)

MongoDB: Map-Reduce example
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MongoDB: Map-Reduce
db.orders.mapReduce(

function() {emit(this.cust_id, this.amount);}, 

function(key, values) {return Array.sum(values)};

{

query: {status: “A”},

out: “order_totals”

}

)

o Only for orders with status: “A” 

o for each cust_id, 

▪ sum all the orders values 

▪ into the “order_totals” collection

Map function

Reduce function
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MongoDB: Map-Reduce features
•All map-reduce functions in MongoDB are JavaScript and run within the mongod
process

•Map-reduce operations 

o take the documents of a single collection as the input

o perform any arbitrary sorting and limiting before beginning the map stage

o return the results as a document or into a collection

•When processing a document, the map function can create more than one key and 
value mapping or no mapping at all

•If you write map-reduce output to a collection, 

o you can perform subsequent map-reduce operations on the same input collection that merge replace, 
merge, or reduce new results with previous results (incremental Map Reduce)

•When returning the results of a map-reduce operation inline, 

o the result documents must be within the BSON Document Size limit, currently 16 megabytes
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Hadoop
The de facto standard Big Data Platform

Hadoop



•2003: Google File System

•2004: MapReduce by Google (Jeff Dean)

•2005: Hadoop, funded by Yahoo, to power a search 
engine project

•2006: Hadoop migrated to Apache Software 
Foundation

•2006: Google BigTable

•2008: Hadoop wins the Terabyte Sort Benchmark, 
sorted 1 Terabyte of data in 209 seconds, previous 
record was 297 seconds

•2009: additional components and sub-projects 
started to be added to the Hadoop platform

Hadoop, a Big-Data-everything platform
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Hadoop, platform overview
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Hadoop, platform overview
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Hadoop, platform overview
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Hadoop, platform overview
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•Hadoop Common: The common 
utilities that support the other Hadoop 
modules.

•Hadoop Distributed File System 
(HDFS™): A distributed file system that 
provides high-throughput access to 
application data.

•Hadoop YARN: A framework for job 
scheduling and cluster resource 
management.

•Hadoop MapReduce: A YARN-based 
system for parallel processing of large 
data sets.

Apache Hadoop, core components
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• Ambari™: A web-based tool for provisioning, managing, and monitoring Apache Hadoop 
clusters which includes support for Hadoop HDFS, Hadoop MapReduce, Hive, HCatalog, 
HBase, ZooKeeper, Oozie, Pig and Sqoop. Ambari also provides a dashboard for viewing 
cluster health such as heatmaps and ability to view MapReduce, Pig and Hive applications 
visually alongwith features to diagnose their performance characteristics in a user-friendly 
manner.

• Avro™: A data serialization system.

• Cassandra™: A scalable multi-master database with no single points of failure.

• Chukwa™: A data collection system for managing large distributed systems.

• HBase™: A scalable, distributed database that supports structured data storage for large 
tables.

• Hive™: A data warehouse infrastructure that provides data summarization and ad hoc 
querying.

• Mahout™: A Scalable machine learning and data mining library.

• Pig™: A high-level data-flow language and execution framework for parallel computation.

• Spark™: A fast and general compute engine for Hadoop data. Spark provides a simple and 
expressive programming model that supports a wide range of applications, including ETL, 
machine learning, stream processing, and graph computation.

• Tez™: A generalized data-flow programming framework, built on Hadoop YARN, which 
provides a powerful and flexible engine to execute an arbitrary DAG of tasks to process data 
for both batch and interactive use-cases. Tez is being adopted by Hive™, Pig™ and other 
frameworks in the Hadoop ecosystem, and also by other commercial software (e.g. ETL 
tools), to replace Hadoop™MapReduce as the underlying execution engine.

• ZooKeeper™: A high-performance coordination service for distributed applications.

Hadoop-related projects at Apache
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•A fast and general engine for large-scale data processing

•Speed

o Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x 
faster on disk.

o Apache Spark has an advanced DAG execution engine that supports acyclic 
data flow and in-memory computing.

•Ease of Use

o Write applications quickly in Java, Scala, Python, R.

o Spark offers over 80 high-level operators that make it easy to build parallel 
apps. And you can use it interactively from the Scala, Python and R shells.

•Generality

o Combine SQL, streaming, and complex analytics.

o Spark powers a stack of libraries including SQL and DataFrames, MLlib for 
machine learning, GraphX, and Spark Streaming. You can combine these 
libraries seamlessly in the same application.

•Runs Everywhere

o Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can access 
diverse data sources including HDFS, Cassandra, HBase, and S3.

Apache Spark
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Hadoop - why
•Storage
o distributed, 

o fault-tolerant, 

o heterogenous, 

o Huge-data storage engine.

•Processing
o Flexible (multi-purpose), 

o parallel and  scalable, 

o high-level programming (Java, Python, Scala, R), 

o batch and real-time, historical and streaming data processing, 

o complex modeling and basic KPI analytics.

•High availability
o Handle failures of nodes by design.

•High scalability
o Grow by adding low-cost nodes, not by replacement with higher-powered computers.

•Low cost. 
o Lots of commodity-hardware nodes instead of expensive super-power computers.
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