
Map Reduce
A scalable distributed programming model
to process Big Data

D A N I E L E A P I L E T T I

P O L I T E C N I C O D I T O R I N O

Map Reduce

MapReduce
•Published in 2004 by Google

o J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, OSDI'04: Sixth
Symposium on Operating System Design and Implementation, San Francisco, CA, December, 2004

o used to rewrite the production indexing system with 24 MapReduce operations (in August 2004 alone, 3288
TeraBytes read, 80k machine-days used, jobs of 10’ avg)

•Distributed programming model

•Process large data sets with parallel algorithms on a cluster of common machines, e.g., PCs

•Great for parallel jobs requiring pieces of computations to be executed on all data records

•Move the computation (algorithm) to the data (remote node, PC, disk)

•Inspired by the map and reduce functions used in functional programming

o In functional code, the output value of a function depends only on the arguments that are passed to the function,
so calling a function f twice with the same value for an argument x produces the same result f(x) each time; this is
in contrast to procedures depending on a local or global state, which may produce different results at different
times when called with the same arguments but a different program state.

DATA MANAGEMENT AND VISUALIZATION 2

MapReduce: working principles

•Consists of two functions, a Map and a Reduce

oThe Reduce is optional

oAdditional shuffling / finalize steps, implementation specific

•Map function

oProcess each record (document) → INPUT

oReturn a list of key-value pairs →OUTPUT

•Reduce function

ofor each key, reduces the list of its values, returned by the map, to a “single” value

oReturned value can be a complex piece of data, e.g., a list, tuple, etc.

DATA MANAGEMENT AND VISUALIZATION 3

Map

•Map functions are called once for each document:

function(doc) {

emit(key1, value1); // key1 = fk1(doc); value1 = fv1(doc)

emit(key2, value2); // key2 = fk2(doc); value2 = fv2(doc)

}

•The map function can choose to skip the document altogether or emit one or more
key/value pairs

•Map function may not depend on any information outside the document

o This independence is what allows map-reduces to be generated incrementally and in parallel

o Some implementations allow global / scope variables

DATA MANAGEMENT AND VISUALIZATION 4

Map example

•Example database, a collection of docs describing university exam records

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

DATA MANAGEMENT AND VISUALIZATION 5

Map example (1)
•List of exams and corresponding marks

Function(doc){

emit(doc.exam, doc.mark);

} Result:

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

doc.id Key Value

6 Bioinformatics 30

2 Computer architectures 24

3 Computer architectures 27

1 Database 29

4 Database 26

8 Database 25

5 Software engineering 21

7 Software engineering 18

Key Value

DATA MANAGEMENT AND VISUALIZATION 6

Map example (2)
•Ordered list of exams, academic year, and date, and select their mark

Function(doc) {
key = [doc.exam, doc.AYear]
value = doc.mark
emit(key, value);

}
Result:

doc.id Key Value

6 [Bioinformatics, 2015-16] 30

2 [Computer architectures, 2015-16] 24

3 [Computer architectures, 2015-16] 27

4 [Database, 2014-15] 26

8 [Database, 2014-15] 25

1 [Database, 2015-16] 29

5 [Software engineering, 2014-15] 21

7 [Software engineering, 2015-16] 18

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

DATA MANAGEMENT AND VISUALIZATION 7

Map example (3)
•Ordered list of students, with mark and CFU for each exam

Function(doc) {
key = doc.student
value = [doc.mark, doc.CFU]
emit(key, value);

}
Result:

doc.i
d

Key Value

1 S123456 [29, 8]

2 S123456 [24, 10]

5 S123456 [21, 8]

6 S123456 [30, 6]

3 S654321 [27, 10]

4 S654321 [26, 8]

7 S654321 [18, 8]

8 s987654 [25, 8]

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

DATA MANAGEMENT AND VISUALIZATION 8

Reduce

•Documents (key-value pairs) emitted by the map function are
sorted by key

o some platforms (e.g. Hadoop) allow you to specifically define a shuffle phase to manage the
distribution of map results to reducers spread over different nodes, thus providing a fine-grained
control over communication costs

•Reduce inputs are the map outputs: a list of key-value documents

•Each execution of the reduce function returns one key-value document

•The most simple SQL-equivalent operations performed by means of reducers are
«group by» aggregations, but reducers are very flexible functions that can execute
even complex operations

•Re-reduce: reduce functions can be called on their own results (in some
implementations)

DATA MANAGEMENT AND VISUALIZATION 9

•Map - List of exams and corresponding
mark

Function(doc){

emit(doc.exam, doc.mark);

}

•Reduce - Compute the average mark for
each exam

Function(key, values){

S = sum(values);

N = len(values);

AVG = S/N;

return AVG;

}

MapReduce example (1)

Key Value

Bioinformatics 30

Computer
architectures

25.5

Database 26.67

Software
engineering

19.5

doc.id Key Value

6 Bioinformatics 30

2 Computer architectures 24

3 Computer architectures 27

1 Database 29

4 Database 26

8 Database 25

5 Software engineering 21

7 Software engineering 18

Map Reduce

The reduce function receives:
• key=Bioinformatics, values=[30]
• …
• key=Database, values=[29,26,25]
• …

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

DATA MANAGEMENT AND VISUALIZATION 10

•Map - List of exams and corresponding mark

Function(doc){

emit(

[doc.exam, doc.AYear],

doc.mark

);

}

•Reduce - Compute the average mark for each
exam and academic year

Function(key, values){

S = sum(values);

N = len(values);

AVG = S/N;

return AVG;

}

MapReduce example (2)

doc.id Key
Valu

e

6 Bioinformatics, 2015-16 30

2 Computer architectures, 2015-16 24

3 Computer architectures, 2015-16 27

4 Database, 2014-15 26

8 Database, 2014-15 25

1 Database, 2015-16 29

5 Software engineering, 2014-15 21

7 Software engineering, 2015-16 18

Key
Valu

e

[Bioinformatics, 2015-16] 30

[Computer architectures,
2015-16]

25.5

[Database, 2014-15] 25.5

[Database, 2015-16] 29

[Software engineering, 2014-15] 21

[Software engineering, 2015-16] 18

The reduce function receives:
• key=[Database, 2014-15],

values=[26,25]
• key=[Database, 2015-16], values=[29]
• …

Reduce is the same as before

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Map Reduce

DATA MANAGEMENT AND VISUALIZATION 11

Rereduce in CouchDB
•Average mark the for each exam (group level=1)

doc.i
d

Key Value

6 Bioinformatics, 2015-16 30

2
Computer architectures,

2015-16
24

3
Computer architectures,

2015-16
27

4
Database, 2014-1015

26

8
Database, 2014-15

25

1 Database, 2015-16 29

5 Software engineering, 2014-15 21

7 Software engineering, 2015-16 18

Key Value

[Bioinformatics, 2015-16] 30

[Computer architectures,
2015-16]

25.5

[Database, 2014-15] 25.5

[Database, 2015-16] 29

[Software engineering, 2014-
15]

21

[Software engineering, 2015-
16]

18

Id: 3
Exam: Computer
architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Id: 2
Exam: Computer
architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software
engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software
engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

Map ReduceDB

Key Value

Bioinformatics 30

Computer architectures 25.5

Database 27.25

Software engineering 19.5

Rereduce

DATA MANAGEMENT AND VISUALIZATION 12

MapReduce example (3a)

Average CFU-weighted mark for each student

•Map

•Reduce

doc.i
d

Key Value

Map

Key Value

Reduce
The reduce function receives:
• key=

values=
• …
• key=
• values=

The reduce function results:
• key=

values=
• …
• key=
• values=

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

DATA MANAGEMENT AND VISUALIZATION 13

Key Value

S123456 25.6

S654321 23.9

s987654 25

doc.i
d

Key Value

1 S123456 [29, 8]

2 S123456 [24, 10]

5 S123456 [21, 8]

6 S123456 [30, 6]

3 S654321 [27, 10]

4 S654321 [26, 8]

7 S654321 [18, 8]

8 s987654 [25, 8]

MapReduce example (3a)
•Map - Ordered list of students, with mark and CFU for each student

Function(doc) {

key = doc.student

value = [doc.mark, doc.CFU]

emit(key, value);

}

•Reduce - Average CFU-weighted mark for each student

Function(key, values){

S = sum([X*Y for X,Y in values]);

N = sum([Y for X,Y in values]);

AVG = S/N;

return AVG;

}

Map Reduce

The reduce function receives:
• key=S123456,

values=[(29,8), (24,10), (21,8)…]
• …
• key=s987654, values=[(25,8)]

key = S123456,
values = [(29,8), (24,10), (21,8)…]
X = 29, 24, 21, … →mark
Y = 8, 10, 8, … →CFU

DATA MANAGEMENT AND VISUALIZATION 14

MapReduce example (3b)
•Compute the number of exams for each student

•Technological view of data distribution among different nodes

Id: 3 Exam: Computer architectures Student:
s654321 AYear: 2015-16 Date: 26-01-2016 Mark=27
CFU=10

Id: 4 Exam: Database Student: s654321
AYear: 2014-15 Date: 26-07-2015 Mark=26 CFU=8

Id: 1 Exam: Database Student: s123456
AYear: 2015-16 Date: 31-01-2016 Mark=29 CFU=8

Id: 2 Exam: Computer architectures Student:
s123456 AYear: 2015-16 Date: 03-07-2015 Mark=24
CFU=10

Id: 5 Exam: Software engineering Student: s123456
AYear: 2014-15 Date: 14-02-2015 Mark=21 CFU=8

Id: 6 Exam: Bioinformatics Student: s123456
AYear: 2015-16 Date: 18-09-2016 Mark=30 CFU=6

Id: 7 Exam: Software engineering Student: s654321
AYear: 2015-16 Date: 28-06-2016 Mark=18 CFU=8

Id: 8 Exam: Database Student: s987654
AYear: 2014-15 Date: 28-06-2015 Mark=25 CFU=8

DB
doc.i

d
Key Value

1 S123456 [29, 1]

2 S123456 [24, 1]

5 S123456 [21, 1]

6 S123456 [30, 1]

3 S654321 [27, 1]

4 S654321 [26, 1]

7 S654321 [18, 1]

8 s987654 [25, 1]

Map

Key Value

S123456 3

S123456 1

S654321 3

s987654 1

Reduce

Key Value

S123456 4

S654321 3

s987654 1

Rereduce

DATA MANAGEMENT AND VISUALIZATION 15

Map Reduce in mongoDB

MongoDB

Aggregation operations in MongoDB

•Aggregation operations

o group values from multiple documents together

o can perform a variety of operations on the grouped data

o return an aggregated result

•MongoDB provides three ways to perform aggregation:

o the aggregation pipeline

▪ exploits native operations within MongoDB,

▪ is the preferred method for data aggregation in MongoDB

o the map-reduce function

▪ since MongoDB 5.0 the map-reduce operation is deprecated

o single-purpose aggregation methods

https://docs.mongodb.com/manual/aggregation/

DATA MANAGEMENT AND VISUALIZATION 17

https://docs.mongodb.com/manual/aggregation/

•Commands

o db.collection.estimatedDocumentCount(),

o db.collection.count()

o db.collection.distinct()

•Features

o aggregate documents from a single
collection

o simple access to common aggregation
processes

o less flexible and powerful than aggregation
pipeline and map-reduce

Single-Purpose Aggregation Operations

DATA MANAGEMENT AND VISUALIZATION 18

Comparison of aggregation operations
•Map Reduce

o Besides grouping operations, can perform complex aggregation tasks

▪ Custom map, reduce and finalize JavaScript functions offer flexibility

o Incremental aggregation on continuously growing datasets

•Aggregation pipeline

o Performance and usability

o Virtually infinite pipeline of transformations

o Map-reduce operations can be rewritten using aggregation pipeline operators, e.g., $group, $merge

o For map-reduce operations that require custom functionality, MongoDB provides the $accumulator
and $function aggregation operators starting in version 4.4. Use these operators to define custom
aggregation expressions in JavaScript.

•For most aggregation operations, the Aggregation Pipeline provides better
performance and more coherent interface

DATA MANAGEMENT AND VISUALIZATION 19

•custom JavaScript functions

•db.collection.mapReduce({

o <map>,

o <reduce>,

o <finalize>,

o <query>,

o <out>,

o <sort>,

o <limit>,

o ...})

MongoDB: Map-Reduce

DATA MANAGEMENT AND VISUALIZATION 20

1. MongoDB applies the map phase to
each input document (i.e. the
documents in the collection that
match the query condition)

2. The map function emits
key-value pairs

3. For those keys that have multiple
values, MongoDB applies
the reduce phase, which collects and
condenses the aggregated data

4. MongoDB then stores the results in a
collection

MongoDB: Map-Reduce

DATA MANAGEMENT AND VISUALIZATION 21

MongoDB: Map-Reduce

•Map

o Requires emit(key, value) to map each
value with a key

o It refers to the current document as this

•Reduce

o Groups all document with the same key

o These functions must be associative and
commutative and must return an object of
the same type of value emitted by Map
(multiple calls to reduce function on the
same key)

•Out

o Specifies where to output the map-reduce
query results

▪ Either a collection

▪ Or an inline result

DATA MANAGEMENT AND VISUALIZATION 22

MongoDB: Map-Reduce

•Finalize (optional)

o Follows the reduce method and modifies the output

•Query (optional)

o specifies the selection criteria for selecting the input documents to the map function

•Sort (optional)

o specifies the sort criteria for the input documents

o useful for optimization, e.g., specify the sort key to be the same as the emit key so that there are
fewer reduce operations.

o the sort key must be in an existing index

•Limit(optional)

o specifies the maximum number of input documents

DATA MANAGEMENT AND VISUALIZATION 23

•E.g.,

db.orders.mapReduce(

function() {

emit(this.cust_id, this.amount);

},

function(key, values) {

return Array.sum(values)

};

{

query: {status: “A”},

out: “order_totals”

}

)

MongoDB: Map-Reduce example

DATA MANAGEMENT AND VISUALIZATION 24

MongoDB: Map-Reduce
db.orders.mapReduce(

function() {emit(this.cust_id, this.amount);},

function(key, values) {return Array.sum(values)};

{

query: {status: “A”},

out: “order_totals”

}

)

o Only for orders with status: “A”

o for each cust_id,

▪ sum all the orders values

▪ into the “order_totals” collection

Map function

Reduce function

DATA MANAGEMENT AND VISUALIZATION 25

MongoDB: Map-Reduce features
•All map-reduce functions in MongoDB are JavaScript and run within the mongod
process

•Map-reduce operations

o take the documents of a single collection as the input

o perform any arbitrary sorting and limiting before beginning the map stage

o return the results as a document or into a collection

•When processing a document, the map function can create more than one key and
value mapping or no mapping at all

•If you write map-reduce output to a collection,

o you can perform subsequent map-reduce operations on the same input collection that merge replace,
merge, or reduce new results with previous results (incremental Map Reduce)

•When returning the results of a map-reduce operation inline,

o the result documents must be within the BSON Document Size limit, currently 16 megabytes

DATA MANAGEMENT AND VISUALIZATION 26

https://docs.mongodb.com/manual/reference/glossary/#term-collection

Hadoop
The de facto standard Big Data Platform

Hadoop

•2003: Google File System

•2004: MapReduce by Google (Jeff Dean)

•2005: Hadoop, funded by Yahoo, to power a search
engine project

•2006: Hadoop migrated to Apache Software
Foundation

•2006: Google BigTable

•2008: Hadoop wins the Terabyte Sort Benchmark,
sorted 1 Terabyte of data in 209 seconds, previous
record was 297 seconds

•2009: additional components and sub-projects
started to be added to the Hadoop platform

Hadoop, a Big-Data-everything platform

DATA MANAGEMENT AND VISUALIZATION 28

Hadoop, platform overview

DATA MANAGEMENT AND VISUALIZATION 29

Hadoop, platform overview

DATA MANAGEMENT AND VISUALIZATION 30

Hadoop, platform overview

DATA MANAGEMENT AND VISUALIZATION 31

Hadoop, platform overview

DATA MANAGEMENT AND VISUALIZATION 32

•Hadoop Common: The common
utilities that support the other Hadoop
modules.

•Hadoop Distributed File System
(HDFS™): A distributed file system that
provides high-throughput access to
application data.

•Hadoop YARN: A framework for job
scheduling and cluster resource
management.

•Hadoop MapReduce: A YARN-based
system for parallel processing of large
data sets.

Apache Hadoop, core components

DATA MANAGEMENT AND VISUALIZATION 33

• Ambari™: A web-based tool for provisioning, managing, and monitoring Apache Hadoop
clusters which includes support for Hadoop HDFS, Hadoop MapReduce, Hive, HCatalog,
HBase, ZooKeeper, Oozie, Pig and Sqoop. Ambari also provides a dashboard for viewing
cluster health such as heatmaps and ability to view MapReduce, Pig and Hive applications
visually alongwith features to diagnose their performance characteristics in a user-friendly
manner.

• Avro™: A data serialization system.

• Cassandra™: A scalable multi-master database with no single points of failure.

• Chukwa™: A data collection system for managing large distributed systems.

• HBase™: A scalable, distributed database that supports structured data storage for large
tables.

• Hive™: A data warehouse infrastructure that provides data summarization and ad hoc
querying.

• Mahout™: A Scalable machine learning and data mining library.

• Pig™: A high-level data-flow language and execution framework for parallel computation.

• Spark™: A fast and general compute engine for Hadoop data. Spark provides a simple and
expressive programming model that supports a wide range of applications, including ETL,
machine learning, stream processing, and graph computation.

• Tez™: A generalized data-flow programming framework, built on Hadoop YARN, which
provides a powerful and flexible engine to execute an arbitrary DAG of tasks to process data
for both batch and interactive use-cases. Tez is being adopted by Hive™, Pig™ and other
frameworks in the Hadoop ecosystem, and also by other commercial software (e.g. ETL
tools), to replace Hadoop™MapReduce as the underlying execution engine.

• ZooKeeper™: A high-performance coordination service for distributed applications.

Hadoop-related projects at Apache

DATA MANAGEMENT AND VISUALIZATION 34

http://incubator.apache.org/ambari/
http://avro.apache.org/
http://cassandra.apache.org/
http://incubator.apache.org/chukwa/
http://hbase.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://pig.apache.org/
http://spark.incubator.apache.org/
http://tez.incubator.apache.org/
http://zookeeper.apache.org/

•A fast and general engine for large-scale data processing

•Speed

o Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x
faster on disk.

o Apache Spark has an advanced DAG execution engine that supports acyclic
data flow and in-memory computing.

•Ease of Use

o Write applications quickly in Java, Scala, Python, R.

o Spark offers over 80 high-level operators that make it easy to build parallel
apps. And you can use it interactively from the Scala, Python and R shells.

•Generality

o Combine SQL, streaming, and complex analytics.

o Spark powers a stack of libraries including SQL and DataFrames, MLlib for
machine learning, GraphX, and Spark Streaming. You can combine these
libraries seamlessly in the same application.

•Runs Everywhere

o Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can access
diverse data sources including HDFS, Cassandra, HBase, and S3.

Apache Spark

DATA MANAGEMENT AND VISUALIZATION 35

https://spark.apache.org/sql/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/
https://spark.apache.org/streaming/

Hadoop - why
•Storage
o distributed,

o fault-tolerant,

o heterogenous,

o Huge-data storage engine.

•Processing
o Flexible (multi-purpose),

o parallel and scalable,

o high-level programming (Java, Python, Scala, R),

o batch and real-time, historical and streaming data processing,

o complex modeling and basic KPI analytics.

•High availability
o Handle failures of nodes by design.

•High scalability
o Grow by adding low-cost nodes, not by replacement with higher-powered computers.

•Low cost.
o Lots of commodity-hardware nodes instead of expensive super-power computers.

DATA MANAGEMENT AND VISUALIZATION 36

