
Design patterns (1)

DANIELE APILETTI

POLITECNICO DI TORINO

MongoDB

Your responsibility: a flexible schema

•Unlike SQL databases, collections do not require its documents to have
the same schema, i.e., the following properties might change:

othe set of fields and

othe data type for the same field

• In practice, however, documents in a collection share a similar structure

oWhich is the best document structure?

oAre there patterns to address common applications?

• It is possible to enforce document validation rules for a collection during
update and insert operations

DATA MANAGEMENT AND VISUALIZATION 1

Example: Embedded vs reference

DATA MANAGEMENT AND VISUALIZATION 2

Atomicity of Write Operations

•A write operation is atomic on the level of a single document, even if the operation
modifies multiple embedded documents within a single document

•When a single write operation (e.g. db.collection.updateMany()) modifies multiple
documents, the modification of each document is atomic, but the operation as a
whole is not atomic

• For situations requiring atomicity of reads and writes to multiple documents (in a
single or multiple collections), MongoDB supports multi-document transactions:

o in version 4.0, MongoDB supports multi-document transactions on replica sets

o in version 4.2, MongoDB introduces distributed transactions, which adds support for multi-document
transactions on sharded clusters and incorporates the existing support for multi-document
transactions on replica sets

DATA MANAGEMENT AND VISUALIZATION 3

Schema validation
MongoDB can perform schema validation during updates and insertions. Existing documents do not
undergo validation checks until modification.

• validator: specify validation rules or expressions for the collection

• validationLevel: determines how strictly MongoDB applies validation rules to existing documents during
an update

o strict, the default, applies to all changes to any document of the collection

o moderate, applies only to existing documents that already fulfill the validation criteria or to inserts

• validationAction: determines whether MongoDB should raise error and reject documents that violate
the validation rules or warn about the violations in the log but allow invalid documents

DATA MANAGEMENT AND VISUALIZATION 4

db.createCollection(<name>,

{validator: <document>,

validationLevel: <string>,

validationAction: <string>,

})

JSON Schema validator

• Starting in version 3.6, MongoDB supports JSON Schema validation (recommended)

• To specify JSON Schema validation, use the $jsonSchema operator

5

db.createCollection("students",
{ validator: {

$jsonSchema: {
bsonType: "object",
required: ["name", "year"],
properties: {

name: {
bsonType: "string",
description: "must be a string and is required"

},
year: {

bsonType: "int",
minimum: 2000,
maximum: 2099,
description: "must be an integer in [2000, 2099] and is required»

}
}

}
}

})

DATA MANAGEMENT AND VISUALIZATION

Query Expression schema validator

In addition to JSON Schema validation that uses the $jsonSchema query operator,
MongoDB supports validation with other query operators, except for:

• $near, $nearSphere, $text, and $where operators

•Note: users can bypass document validation with bypassDocumentValidation option.

6

db.createCollection("contacts",
{ validator: {

$or: [
{ phone: { $type: "string" } },
{ email: { $regex: /@mongodb\.com$/ } },
{ status: { $in: ["Unknown", "Incomplete"] } }

]
}

})

DATA MANAGEMENT AND VISUALIZATION

Designing factors
•Atomicity

o Embedded Data Model vs Multi-Document Transaction

• Sharding

o selecting the proper shard key has significant implications for performance, and can enable or
prevent query isolation and increased write capacity

• Indexes

o each index requires at least 8 kB of data space.

o adding an index has some negative performance impact for write operations

o collections with high read-to-write ratio often benefit from additional indexes

o when active, each index consumes disk space and memory

•Data Lifecycle Management

o the Time to Live feature of collections expires documents after a period of time

7DATA MANAGEMENT AND VISUALIZATION

Building with patterns
1. Approximation

2. Attribute

3. Bucket

4. Computed

5. Document Versioning

6. Extended Reference

7. Outlier

8. Pre-allocation

9. Polymorphic

10. Schema Versioning

11. Subset

12. Tree

8

“a driving force in what your schema

should look like, is what the data access

patterns for that data are”

source: https://www.mongodb.com/blog/post/building-with-patterns-the-extended-reference-pattern

DATA MANAGEMENT AND VISUALIZATION

https://www.mongodb.com/blog/post/building-with-patterns-the-extended-reference-pattern

• Let's say that our city planning strategy is based on
needing one fire engine per 10,000 people.

• instead of updating the population in the database
with every change, we could build in a counter and
only update by 100, 1% of the time.

•Another option might be to have a function that
returns a random number. If, for example, that
function returns a number from 0 to 100, it will
return 0 around 1% of the time. When that condition
is met, we increase the counter by 100.

•Our writes are significantly reduced here, in this
example by 99%.

•when working with large amounts of data, the
impact on performance of write operations is large
too.

1) Approximation

9

Examples
▪ population counter

▪ movie website counter
source: https://www.mongodb.com/blog/post/building-with-patterns-the-approximation-pattern

DATA MANAGEMENT AND VISUALIZATION

https://www.mongodb.com/blog/post/building-with-patterns-the-approximation-pattern

•Useful when

o expensive calculations are frequently done

o the precision of those calculations is not the
highest priority

• Pros

o fewer writes to the database

o no schema change required

•Cons

o exact numbers aren’t being represented

o implementation must be done in the
application

1) Approximation

10

Examples
▪ population counter

▪ movie website counter
source: https://www.mongodb.com/blog/post/building-with-patterns-the-approximation-pattern

DATA MANAGEMENT AND VISUALIZATION

https://www.mongodb.com/blog/post/building-with-patterns-the-approximation-pattern

• Let’s think about a collection of movies.

• The documents will likely have similar fields
involved across all the documents:

o title, director, producer, cast, etc.

• Let’s say we want to search on the release
date: which release date? Movies are often
released on different dates in different countries.

•A search for a release date will require looking
across many fields at once, we’d need several
indexes on our movies collection.

2) Attribute

11

▪ Move this subset of information into an array and
reduce the indexing needs. We turn this
information into an array of key-value pairs

DATA MANAGEMENT AND VISUALIZATION

•Useful when

o there is a subset of fields that share common
characteristics

o the fields we need to sort on are only found in a
small subset of documents

• Pros

o fewer indexes are needed, e.g.,
{"releases.location": 1,
"releases.date": 1}

o queries become simpler to write and are generally
faster

• Example

o product catalog

2) Attribute

12

Source: https://www.mongodb.com/blog/post/building-with-patterns-the-attribute-pattern

DATA MANAGEMENT AND VISUALIZATION

https://www.mongodb.com/blog/post/building-with-patterns-the-attribute-pattern

•With data coming in as a stream over a period of
time (time series data) we may be inclined to store
each measurement in its own document, as if we
were using a relational database.

•We could end up having to index sensor_id and
timestamp for every single measurement to enable
rapid access.

•We can "bucket" this data, by time, into documents
that hold the measurements from a particular time
span.

•We can also programmatically add additional
information to each of these "buckets".

•Benefits in terms of index size savings, potential
query simplification, and the ability to use that pre-
aggregated data in our documents.

3) Bucket

13DATA MANAGEMENT AND VISUALIZATION

•Useful when

o needing to manage streaming data

o time-series

o real-time analytics

o Internet of Things (IoT)

• Pros

o reduces the overall number of documents in a
collection

o improves index performance

o can simplify data access by leveraging pre-
aggregation, e.g., average temperature =
sum/count

• Examples

o IoT, time series

3) Bucket

14DATA MANAGEMENT AND VISUALIZATION

• The usefulness of data becomes much more
apparent when we can compute values from it.

o What's the total sales revenue of …?

o How many viewers watched …?

• These types of questions can be answered from
data stored in a database but must be computed.

•Running these computations each time, they're
requested though becomes a highly resource-
intensive process, especially on huge datasets.

• Example: a movie review website, every time we
visit a movie webpage, it provides information
about the number of cinemas the movie has
played in, the total number of people who've
watched the movie, and the overall revenue.

4) Computed

15DATA MANAGEMENT AND VISUALIZATION

•Useful when

o very read-intensive data access patterns

o data needs to be repeatedly computed by the
application

o computation done in conjunction with any update or
at defined intervals - every hour for example

•Pros

o reduction in CPU workload for frequent computations

•Cons

o it may be difficult to identify the need for this pattern

• Examples

o revenue or viewer

o time series data

o product catalogs

4) Computed

16DATA MANAGEMENT AND VISUALIZATION

• In most cases we query only the latest state of the
data.

o What about situations in which we need to query
previous states of the data?

o What if we need to have some functionality of version
control of our documents?

•Goal: keeping the version history of documents
available and usable

•Assumptions about the data in the database and the
data access patterns that the application makes

o Limited number of revisions

o Limited number of versioned documents

o Most of the queries performed are done on the most
recent version of the document

5) Document Versioning

17DATA MANAGEMENT AND VISUALIZATION

•An insurance company might make use of this
pattern.

o Each customer has a “standard” policy and a second
portion that is specific to that customer.

o This second portion would contain a list of policy add-
ons and a list of specific items that are being insured.

•As the customer changes which specific items are
insured, this information needs to be updated while
the historical information needs to be available as
well.

•When a customer purchases a new item and wants it
added to their policy, a new policy_revision document
is created using the current_policy document.

•A version field in the document is then incremented
to identify it as the latest revision and the customer's
changes added.

5) Document Versioning

18DATA MANAGEMENT AND VISUALIZATION

The newest revision will be stored in the
current_policies collection and the old version
will be written to the policy_revisions
collection.

• Pros

o easy to implement, even on existing systems

o no performance impact on queries on the latest
revision

• Cons

o doubles the number of writes

o queries need to target the correct collection

• Examples

o financial industries

o healthcare industries

5) Document Versioning

19

source: https://www.mongodb.com/blog/post/building-with-patterns-the-document-versioning-pattern

DATA MANAGEMENT AND VISUALIZATION

https://www.mongodb.com/blog/post/building-with-patterns-the-document-versioning-pattern

In an e-commerce application

o the order

o the customer

o the inventory

are separate logical entities

•However, the full retrieval of an order requires
to join data from different entities

•A customer can have N orders, creating a 1-N
relationship

• Embedding all the customer information inside
each order

o avoids the JOIN operation

o results in a lot of duplicated information

o not all the customer data may be actually needed

6) Extended Reference

20DATA MANAGEMENT AND VISUALIZATION

6) Extended Reference
Instead of embedding (i.e., duplicating) all the data of an external entity (i.e., another document), we only copy the
fields we access frequently.

Instead of including a reference to join the information, we only embed those fields of the highest priority and most
frequently accessed.

•Useful when

o your application is experiencing lots of JOIN operations to bring together frequently accessed data

•Pros

o improves performance when there are
a lot of join operations

o faster reads and a reduction in the
complexity of data fetching

•Cons

o data duplication, it works best if such
data rarely change (e.g., user-id, name)

o Sometimes duplication of data is better
because you keep the historical values
(e.g., shipping address of the order)

21DATA MANAGEMENT AND VISUALIZATION

Acknowledgment

MongoDB

Bibliography

For further information on the content of these slides, please refer to the book

“Design with MongoDB”
Best Models for Applications

by Alessandro Fiori

https://flowygo.com/en/projects/design-with-mongodb/

23

https://flowygo.com/en/projects/design-with-mongodb/

