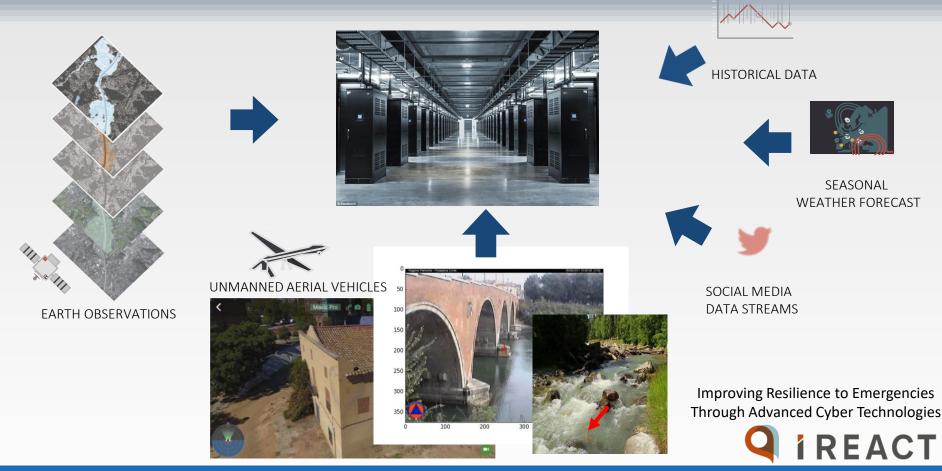
Data Science The Big Data challenge

ELENA BARALIS POLITECNICO DI TORINO

Big data hype?

www.shutterstock.com · 161743691

Emergency management



POLITECNICO DI TORINO

Emergency management

User engagement

Who generates big data?

User Generated Content (Web & Mobile)

E.g., Facebook, Instagram, Yelp, TripAdvisor, Twitter, YouTube

Health and scientific computing

Who generates big data?

Log files Web server log files, machine syslog files

Internet Of Things Sensor networks, RFID, smart meters

Many different definitions

Many different definitions

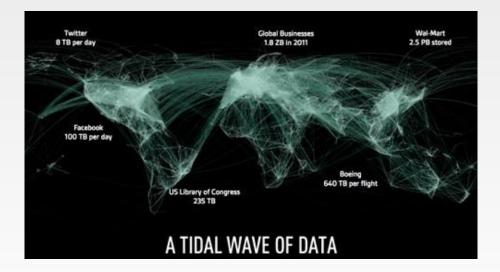
Many different definitions

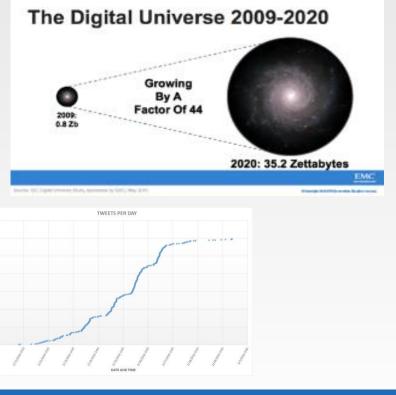
Many different definitions

The Vs of big data: Volume

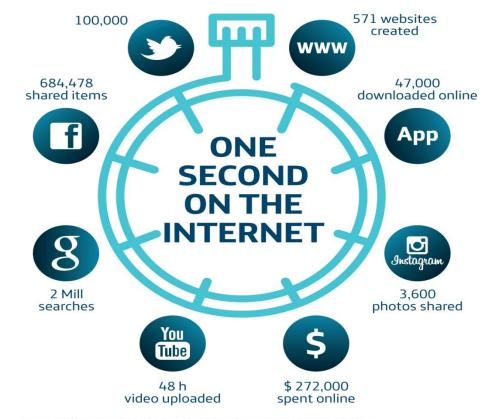
Data volume increases exponentially over time

44x increase from 2009 to 2020
 Digital data 35 ZB in 2020





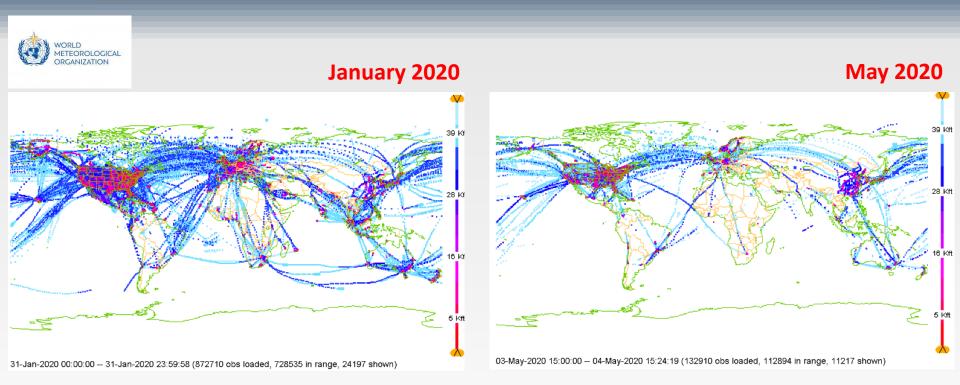
On the Internet...



Source: Telefónica analysis based on Social and Digital Media Revolution Statistics 2013 from MistMediaGroup (htt://youtube.com/watch?v=Slb5x5fixk4).

http://www.internetlivestats.com/

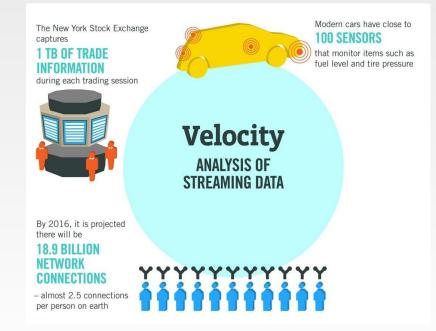
Weather forecast



The Vs of big data: Velocity

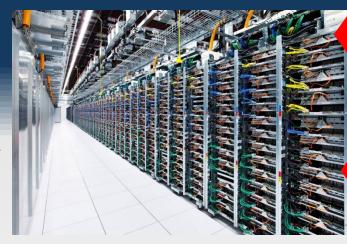
Fast data generation rate Streaming data

Very fast data processing to ensure timeliness

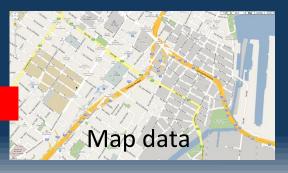


(Near) Real time processing

Crowdsourcing



Computing



Sensing

The Vs of big data: Variety

□ Various formats, types and structures

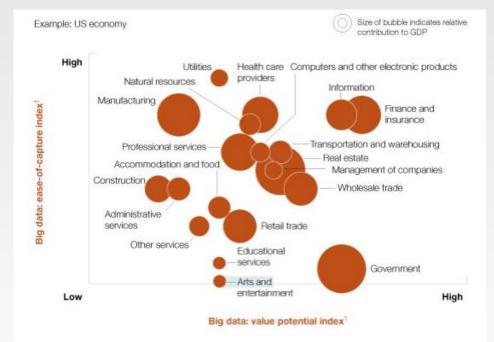
Numerical data, image data, audio, video, text, time series

A single application may generate many different formats

The Vs of big data: Veracity

The most important V: Value

Translate data into business advantage



¹For detailed explication of metrics, see appendix in McKinsey Global Institute full report Big data: The next frontier for innovation, competition, and productivity, available free of charge online at mckinsey.com/mgi.

Source: US Bureau of Labor Statistics; McKinsey Global Institute analysis

Big data challenges

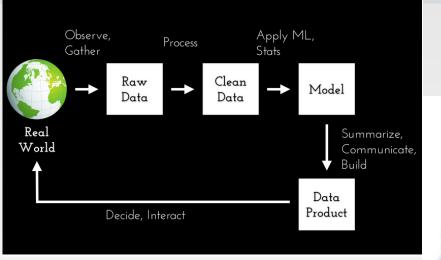
Technology & infrastructure
 New architectures, programming paradigms and techniques
 Transfer the processing power to the data
 Apache Hadoop/Spark ecosystem
 Data management & analysis
 New emphasys on "data"

Data science

"Extracting meaning from very large quantities of data"

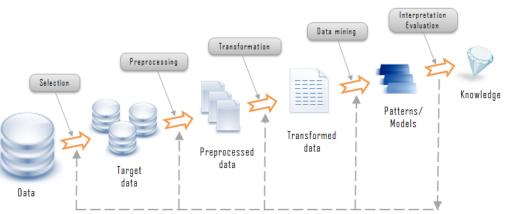
D.J. Patil coined the word *data scientist*

The data science process



AKA **KDD** process

Knowledge Discovery in Databases



POLITECNICO DI TORINO

Generation

Passive recording

Typically structured data

Bank trading transactions, shopping records, government sector archives

Active generation

Semistructured or unstructured data

User-generated content, e.g., social networks

Automatic production

Location-aware, context-dependent, highly mobile data

Sensor-based Internet-enabled devices (IoT)

Acquisition

Collection

Pull-based, e.g., web crawler

Push-based, e.g., video surveillance, click stream

Transfer to data center over high capacity links

Preprocessing

Integration, cleaning, redundancy elimination

Storage

Storage infrastructure

Storage technology, e.g., HDD, SSD

Networking architecture, e.g., DAS, NAS, SAN

Data management

□ File systems (HDFS), key-value stores (Memcached), column-oriented databases (Cassandra), document databases (MongoDB)

Programming models

Map reduce, stream processing, graph processing

Analysis

Objectives

Descriptive analytics, predictive analytics, prescriptive analytics

Methods

Statistical analysis, machine learning and data mining, text mining, network and graph data mining

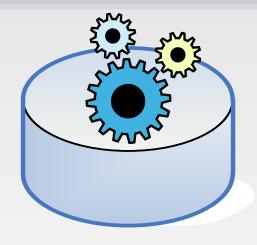
Association analysis, classification and regression, clustering

Diverse domains call for customized techniques

Machine learning and data mining

Non trivial extraction of

- 🖵 implicit
- previously unknown
- potentially useful
- information from available data
- Extraction is automatic
 - performed by appropriate algorithms
- Extracted information is represented by means of abstract models
 - denoted as *pattern*



Example: profiling

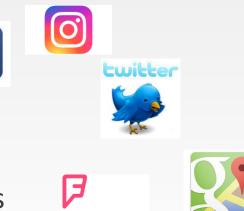
Consumer behavior in e-commerce sites Selected products, requested information, ...

Search engines and portals
 Query keywords, searched topics and objects

Social network data
Profiles (Facebook, Instagram, ...)

Dynamic data: posts on blogs, FB, tweets

Maps and georeferenced data
Localization, interesting locations for users



YAHOO!

D<mark>B</mark>G₿

Google Maps

Example: profiling

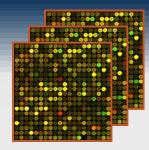
User/service profiling Recommendation systems, advertisements Market basket analysis Correlated objects for cross selling User registration, fidelity cards Context-aware data analysis Integration of different dimensions E.g., location, time of the day, user interest

Text mining

Brand reputation, sentiment analysis, topic trends

Example: biological data

- Microarray
 - expression level of genes in a cellular tissue
 - various types (mRNA, DNA)
- Patient clinical records
 personal and demographic data
 exam results
- Textual data in public collections
 heterogeneous formats, different objectives
 scientific literature (PUBMed)
 Ontologies (Gene Ontology)



CLID	PATIENT ID	shx013: 49A34	shv060: 45A9	shq077: 52A28	shx009: 4A34	shx014: 61A31	shq082: 99A6	shq083: 46A15	shx008: 41A31
IMAGE:7	4 <mark>1ISG20 in</mark>	-1.02	-2.34	1.44	0.57	-0.13	0.12	0.34	-0.51
IMAGE:7	6 [°] TNFSF13	-0.52	-4.06	-0.29	0.71	1.03	-0.67	0.22	-0.09
IMAGE:3	61 <mark>LOC93343</mark>	-0.25	-4.08	0.06	0.13	0.08	0.06	-0.08	-0.05
IMAGE:2	3: <mark>ITGA4 in</mark>	-1.375	-1.605	0.155	-0.015	0.035	-0.035	0.505	-0.865

the Gene Ontology

Biological analysis objectives

Clinical analysis

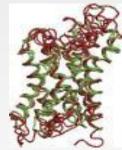
- detecting the causes of a pathology
- monitoring the effect of a therapy
- ⇒ diagnosis improvement and definition of new specific therapies

Bio-discovery

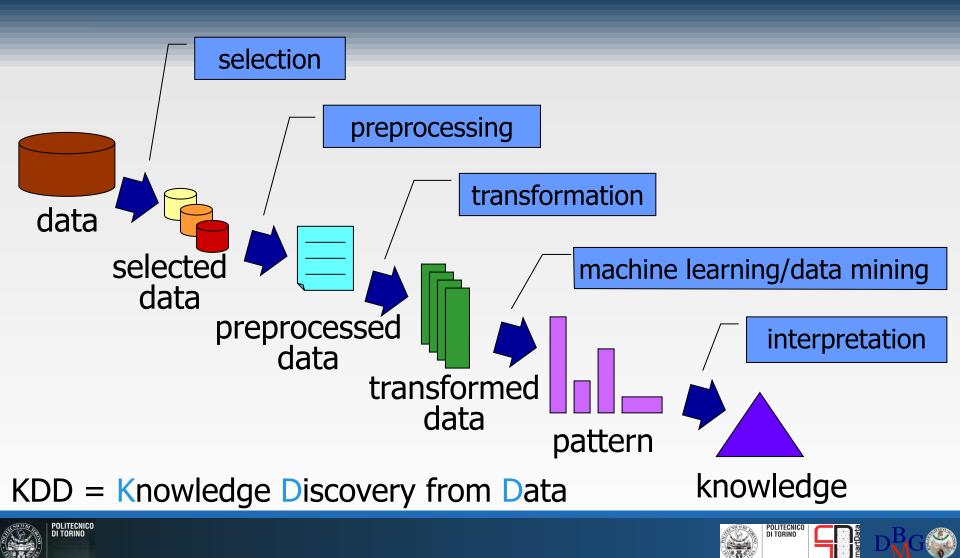
- gene network discovery
- analysis of multifactorial genetic pathologies

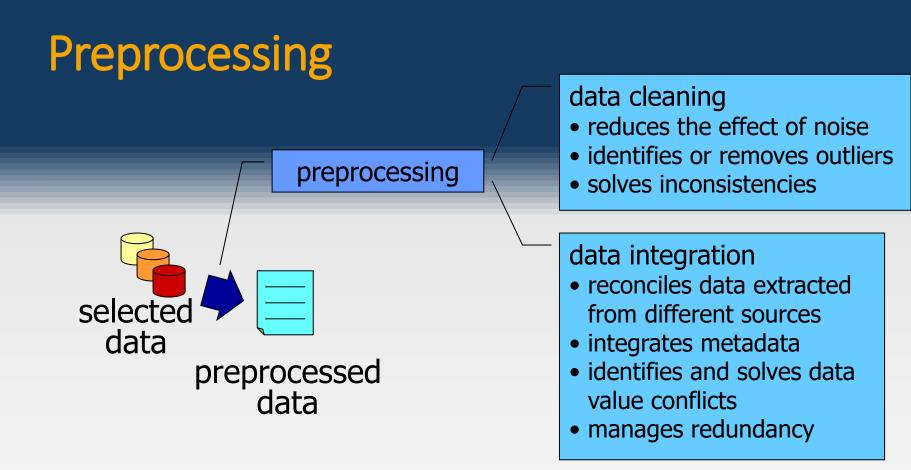
Pharmacogenesis

lab design of new drugs for genic therapies



Knowledge Discovery Process





Real world data is "dirty" Without good quality data, no good quality pattern

A word from practitioners

At least 80-90% of their work involves not machine learning, but

- Working with experts to understand the domain, assumptions, questions
- Trying to catalog and make sense of the data sources
- Wrangling, extracting, and integrating the data
- Cleaning the wrangled data

Content derived by material from the OpenDS4All project

Association rules

Objective

extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

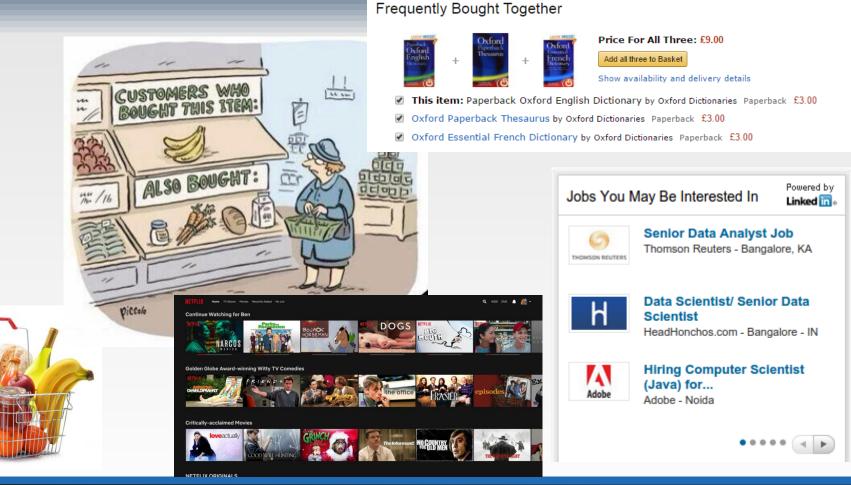
TID	Items			
1	Bread, Coke, Milk			
2	Beer, Bread			
3	Beer, Coke, Diapers, Milk			
4	Beer, Bread, Diapers, Milk			
5	Coke, Diapers, Milk			

Association rule

diapers \Rightarrow beer

- 2% of transactions contains both items
- 30% of transactions containing diapers also contain beer

Association rules

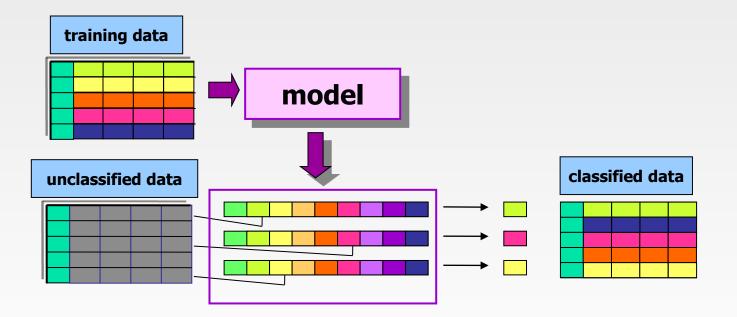


Classification

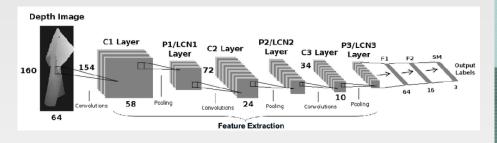
Objectives

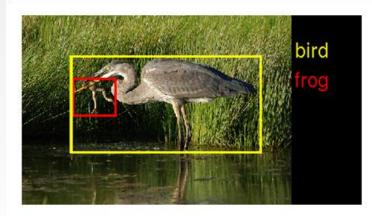
prediction of a class label

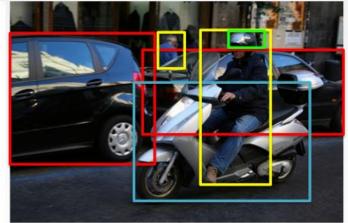
definition of an interpretable model of a given phenomenon



Classification







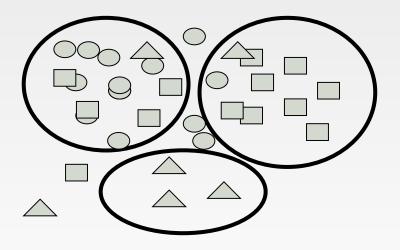
Person Car Motorcycle Helmet

Clustering

Objectives

detecting groups of similar data objects

identifying exceptions and outliers

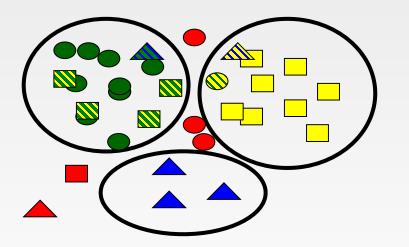


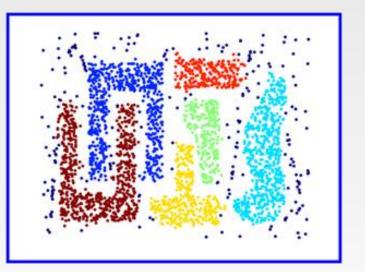
Clustering

Objectives

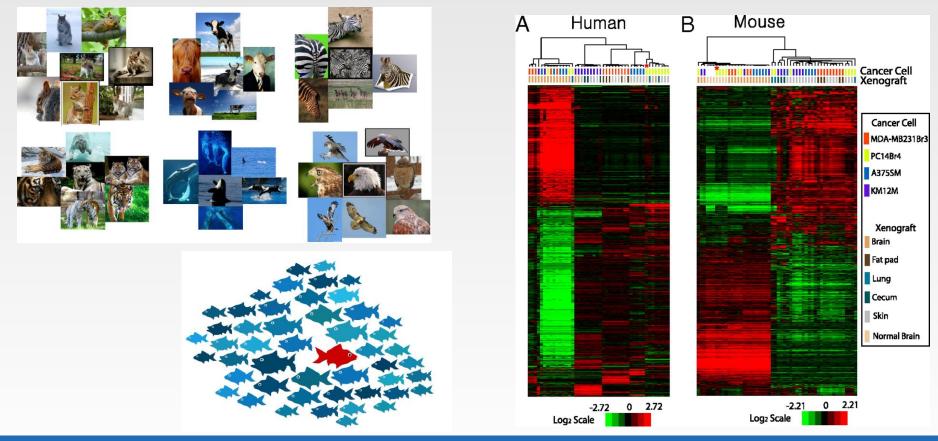
detecting groups of similar data objects

identifying exceptions and outliers





Clustering



Other data mining techniques

Sequence mining

ordering criteria on analyzed data are taken into account

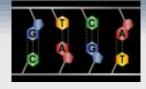
- example: motif detection in proteins
- Time series and geospatial data
 - temporal and spatial information are considered
 - example: sensor network data

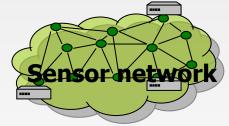
Regression

- prediction of a continuous value
- example: prediction of stock quotes

Outlier detection

example: intrusion detection in network traffic analysis





POLITECNICO DI TORINO

The data science process

□What *question* are you answering?

- □What is the right *scope* of the project?
- What *data* will you use?
- What *techniques* are you going to try?
- How will you *evaluate* your result?
- □What *maintenance* will be required?

The data science recipe

Different ingredients needed

Data expert

Data processing, data structures

Data analyst

Data mining, statistics, machine learning

□Visualization expert

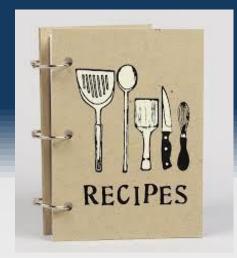
□Visual art design, storytelling skills

Domain expert

Provide understanding of the application domain

Business expert

Data driven decisions, new business models



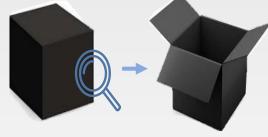
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Open issues

Social impact of analysis is very important
 Interpretability and transparency of the analysis process
 Bias in algorithms and data
 Privacy preservation

Interpretability in machine learning

"The ability to explain or to present in understandable terms to a human"



Trade-off Accuracy-Interpretability

Open the black box

Model explanation: global understanding of how a model works

Prediction explanation: local understanding of why a prediction is made

Interpretable feature selection: incorporating interpretabilitybased criteria into the model design

Interpretability

Learned decision rule in pneumonia patients dataset from USA hospital

history of asthma \rightarrow lower chance of dying from pneumonia

□MD consider asthma as a serious risk factor for people who get pneumonia

- Analysis
 - asthmatics probably notice earlier the symptoms of pneumonia
 - a healthcare professional is going to provide earlier pneumonia diagnosis
 - as high-risk patients, they're going to get high-quality treatment sooner than other people

asthmatics actually have almost half the chance of dying of non-asthmatics

Using a neural network, this model issue would *never* have been uncovered

Algorithmic and data bias

Task: predict likelihood of an individual committing a future crime
 Risk scores used by US criminal justice system

Scores computed from

Questions answered by the defendants

Information pulled by criminal records

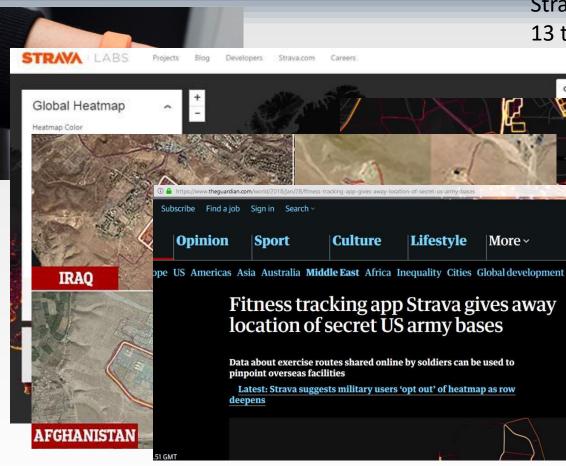
Race was not among the questions

... however other items may be correlated (e.g., poverty, joblessness)

Software product flagged black defendants as future criminals more frequently than white defendants

Training data was biased by a larger black defendant population

Privacy



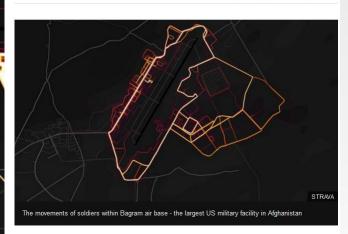
 BBC
 Mark
 News
 Sport
 Weather
 iPlayer
 TV
 Ra

 Strava
 releved their global heatmap.

 13 trill
 Orn
 Proprint point solt for orn
 Steine
 Health
 Failth
 Failth

Fitness app Strava lights up staff at military bases

() 29 January 2018



Security concerns have been raised after a fitness tracking firm showed the <u>exercise routes of mil</u>itary personnel in bases around the world.

< Share

Open issues

- Social impact of analysis is very important
 Interpretability and transparency of the analysis process
 Privacy preservation
- Many technical issues are not solved
 - Scalability to **huge** data volumes
 - Data dimensionality
 - Complex data structures, heterogeneous data formats
 - Data quality
 - Streaming data

