" &l

" AA_,_,«A"' Politecnico

\,m. ::::.....::::::ﬁiihnm di Torino NoSQL Databases
W 1859 ,,
-\ te
o e

Introduction to MongoDB

DANIELE APILETTI

POLITECNICO DI TORINO

Introduction

°The leader in the NoSQL Document-based databases
°Full of features, beyond NoSQL.:

oHigh performance
oHigh availability

o Native scalability
oHigh flexibility

o Open source

Terminology — Approximate mapping

Relational database MongoDB
Table Collection
Record Document
Column Field

DATA MANAGEMENT AND VISUALIZATION

Document Data Design

*High-level, business-ready representation of the data

oRecords are stored into BSON Documents
= BSON is a binary representation of JSON documents
= field-value pairs

= may be nested

{

_id: <ObjectID1>, {
username: "123xyz", _id: ObjectId("5099803df3f4948bd2f98391"),
contact:
{ .) name: { first: "Alan", last: "Turing" },
phone: 1234567890, . Embedded _ ' '
email: "xyz@email.com", Sub-Document birth: new Date('Jun 23, 1912'"),
} — death: new Date('Jun 07, 1954'),
access: {) contribs: ["Turing machine", "Turing test", "Turingery" 1],
level: 5, Embedded _
group: "dev" >— Sub-Document views : NumberLong(1250000)
. r
}), 3

DATA MANAGEMENT AND VISUALIZATION 4

https://docs.mongodb.com/manual/reference/glossary/#std-term-JSON

Document Data Design

High-level, business-ready representation of the data
Mapping into developer-language objects

date, timestamp, array, sub-documents, etc.
Field names

The field name _id is reserved for use as a primary key; its value must be unique in the
collection, is immutable, possibly autogenerated, and may be of any type other than an array.

Field names cannot contain the null character.
The server permits storage of field names that contain dots (.) and dollar signs ($)

BSON documents may have more than one field with the same name. Most MongoDB
interfaces, however, represent MongoDB with a structure (e.qg., a hash table) that does not
support duplicate field names.

The maximum BSON document size is 16 megabytes. To store documents larger than the
maximum size, MongoDB provides GridFS.

Unlike JavaScript objects, the fields in a BSON document are ordered.

DATA MANAGEMENT AND VISUALIZATION 5

4 4} ~
¥ %g 4

D b . o
YA A '5; Politecnico
Hi :::::h‘iiii'il‘li"l di Torino Mon go DB

Databases and collections.
Create and delete operations

Databases and Collections

°Each instance of MongoDB can manage multiple databases

°Each database is composed of a set of collections

°*Each collection contains a set of documents

o The documents of each collection represent similar “objects”
o However, remember that MongoDB is schema-less

o You are not required to define the schema of the documents a-priori and objects of the same
collections can be characterized by different fields

o Starting in MongoDB 3.2, you can enforce document validation rules for a collection during
update and insert operations.

DATA MANAGEMENT AND VISUALIZATION 7

Databases and Collections

°*Show the list of available databases

show databases

*Select the database you are interested in

use <database-name>

°E.qg.

ouse deliverydb

DATA MANAGEMENT AND VISUALIZATION

Databases and Collections

°Create a database and a collection inside the database
o Select the database by using the command “use <database name>"
o Then, create a collection
= MongoDB creates a collection implicitly when the collection is first referenced in a command
°Delete/Drop a database
o Select the database by using "use <database name>"

o Execute the command

db.dropDatabase()
E.g.,

use deliverydb;

db.dropDatabase () ;

DATA MANAGEMENT AND VISUALIZATION

Databases and Collections

°A collection stores documents, uniquely identified by a document ™_id"”

°Create collections

db.createCollection(<collection name>, <options>);

o The collection is associated with the current database. Always select the database
before creating a collection.

o Options related to the collection size and indexing, e.g., to create a capped
collection, or to create a new collection that uses document validation

°E.qg,,

o db.createCollection (“authors”, {capped: true});

DATA MANAGEMENT AND VISUALIZATION 10

Databases and Collections

*Show collections

show collections

*Drop collections

db.<collection_name>.drop()

°E.qg.
odb.authors.drop ()

C.R.U.D. Operations

db.users.insertOne(< collection
{
name: "sue", < field: value
Y age: 26, < field: value document
Create status: "pending” <« field: value
3
)
db.users.find(<«—— collection
Py d { age: { $gt: 18 } 3, <—— query criteria
Rea { name: 1, address: 1 } <«—— projection
). limit(5) <—— cursor modifier
db.users.updateMany(44— collection
{ age: { $1t: 18 } 3}, 4— update filter
[set: status: "reject” date action
Update | { $set: { ject” 3 } 4—— up i
db.users.deleteMany(4—— collection
{ status: "reject" } ¢—— — delete filter
o
Delete)

Create: insert one document

*Insert a single document in a collection

db.<collection name>.insertOne({<set of the field:value pairs of the new document>});

°E.q,,
db.people.1insertOne ({
user 1id: "abcl2Z23",
age: 595,
status: "A"

b

Create: insert one document

*Insert a single document in a collection
db.<collection name>.insertOne({<set of the field:value pairs of the new document>});
°E.q,,
db.people.1insertOne ({

user 1d: "abcl2Z23",

Field age: 55,
name status: "A"

b))

DATA MANAGEMENT AND VISUALIZATION

Create: insert one document

*Insert a single document in a collection

db.<collection name>.insertOne({<set of the field:value pairs of the new document>});
°E.qg.
db.people.1insertOne ({

user 1d: "abcl2Z23",

age: 259, «)Field value
status: "A"

b))

DATA MANAGEMENT AND VISUALIZATION

Create: insert one document

*Insert a single document in a collection
db.<collection name>.insertOne({<set of the field:value pairs of the new document>});
Now people contains a new document representing a user with:
user 1id: "abcl23",
age: 55

status: "A"

DATA MANAGEMENT AND VISUALIZATION 16

Create: insert one document

°E.q,,

db.people.1insertOne ())
Favorite colors is

user 1d: "abclZ24", an array
age: 45,

favorite colors: ["blue", "green"]

P

Now people contains a new document representing a user with:

user id: "abcl24", age: 45 andanarray favorite colors containing
the values "blue" and "green"

DATA MANAGEMENT AND VISUALIZATION 17

Create: insert one document

°E.q,,

db.people.1insertOne ({

Nested document

user 1d: "abclZ24",
age: 45,

address: {

street: "my street",

city: "my city"

P

Example of a document containing a nested document

DATA MANAGEMENT AND VISUALIZATION

Create: insert many documents

*Insert multiple documents in a single statement:

db.<collection name>.insertMany([<comma separated list of documents>]);

db.products.insertMany ([
{ user 1d: "abcl23", age: 30, status: "A"},
{ user 1d: "abc4b56", age: 40, status: "A"},
{ user 1d: "abc789", age: 50, status: "B"}
1)7

DATA MANAGEMENT AND VISUALIZATION

19

Create: insert many documents

°Insert many documents with one single command

db.<collection name>.insertMany([<comma separated list of documents>]);

°E.qg.,

db.people.insertMany ([
{user id: "abcl23", age: 55, status: “A"},

{user id: "abcl24", age: 45, favorite colors: ["blue", "green"]}

1)

DATA MANAGEMENT AND VISUALIZATION 20

Delete

Delete existing data, in MongoDB corresponds to the deletion of
the associated document.

Conditional delete

Multiple delete

MySQL clause MongoDB operator

DELETE FROM deleteMany ()

DATA MANAGEMENT AND VISUALIZATION 21

Delete

MySQL clause

MongoDB operator

DELETE FROM

deleteMany ()

DELETE FROM people
WHERE status = "D"

db.people.deleteMany (
{ status: "D" }

DATA MANAGEMENT AND VISUALIZATION

22

Delete

MySQL clause

MongoDB operator

DELETE FROM

deleteMany ()

DELETE FROM people
WHERE status = "D"

db.people.deleteMany (
{ status: "D" }

)

DELETE FROM people

db.people.deleteMany ({})

DATA MANAGEMENT AND VISUALIZATION

23

¢ Politecnico
i di Torino MongoDB

Databases and collections.
Querying data (find operations)

Query language

Most of the operations available in SQL language can be expressend in

MongoDB language

MySQL clause MongoDB operator
SELECT find ()
SELECT * db.people.find()

FROM people

DATA MANAGEMENT AND VISUALIZATION

25

Read data from documents

*Select documents

db.<collection name>.find({<conditions>}, {<fields of interest>});

Read data from documents (Filter conditions)

*Select documents

db.<collection name>.find({<conditions>}, {<fields of interest>});

*Select the documents satisfying the specified conditions and specifically
only the fields specified in fields of interest
o<conditions> areoptional

= conditions take a document with the form:

{fieldl : <value>, field2 : <value> ... }

= Conditions may specify a value or a regular expression

DATA MANAGEMENT AND VISUALIZATION 27

Read data from documents (Project fields)

*Select documents

db.<collection name>.find({<conditions>}, {<fields of interest>});

*Select the documents satisfying the specified conditions and specifically
only the fields specified in fields of interest
o<fields of interest> areoptional

= projections take a document with the form:

{fieldl : <value>, field2 : <value> ... }

= 1/true to include the field, o/false to exclude the field

DATA MANAGEMENT AND VISUALIZATION 28

find() operator (2)

SELECT id,
user id,
status
FROM people

db.people. find (
{ },
{ user _id: 1,
status: 1

}

DATA MANAGEMENT AND VISUALIZATION

29

find() operator (2)

MySQL clause MongoDB operator
SELECT find ()
% Where Condition
SELECT id, db.peoplestfind (
user id, { },
status { user id: 1,
FROM people status: 1
}
)

\ Select fields

DATA MANAGEMENT AND VISUALIZATION

find() operator (3)

FROM people

MySQL clause MongoDB operator

SELECT find ()

WHERE find ({<WHERE CONDITIONS>})
SELECT * db.people.find (

WHERE status = "A") \\

{ status: "A" }

\ Where Condition

DATA MANAGEMENT AND VISUALIZATION

31

find() operator (4)

FROM people
WHERE status = "A"

MySQL clause MongoDB operator
SELECT find ()
WHERE find ({<WHERE CONDITIONS>})
/ Where Condition
SELECT user 1d, status db.people.find //

{ status: "A" },

{ user id: 1,
status: 1,
_id: O

N

By default, the idfieldis always returned.

\ Selection fields

To remove it, you must explicitly indicate id: 0

DATA MANAGEMENT AND VISUALIZATION

32

find() operator (5)

MySQL clause MongoDB operator
SELECT find ()
WHERE find ({<WHERE CONDITIONS>})
db.people.find
{"address.city" :“"Rome" }
> \
{ _ld . IIA" ,

address: {

street: “Wia Torino”,

number: “123/B”,
city: “Rome”,
code: “00184”

DATA MANAGEMENT AND VISUALIZATION

nested document

Read data from one document

*Select a single document

db.<collection name>.findOne({<conditions>}, {<fields of interest>});

*Select one document that satisfies the specified query criteria.

olf multiple documents satisfy the query, it returns the first one according
to the natural order which reflects the order of documents on the disk.

DATA MANAGEMENT AND VISUALIZATION 34

(No) joins

°No join operator exists (but S1ookup)

o You must write a program that
= Selects the documents of the first collection you are interested in

= |terates over the documents returned by the first step, by using the loop statement provided by
the programming language you are using

= Executes one query for each of them to retrieve the corresponding document(s) in the other
collection

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup

DATA MANAGEMENT AND VISUALIZATION 35

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup

(No) joins

°(no) joins

o Relations among documents/records are provided by

= Object_ID (_id), named “"Manual reference” in MongoDB, a second query is required

= DBRef, a standard approach across collections and databases (check the driver compatibility)

{ "$ref"

User Document

{
_1d: <ObjectIDl>,

username: "123xyz",

}

<value>, "$id"

Access Document

{
_id: <ObjectID2>,

user id: <ObjectIDl>,
phone: 1234567890,
email: "xyz@email.com

}

<value>, "$db"

AN

"

Contact Document

{

*_id: <0ObjectID3>,

user id: <ObjectIDl>,
level: 5,
group: "dev"

}

AN

<value> }

{

_id: <CObjectIDl>,

username:
contact:

access:

{

}
{

"123xyz",

phone: 1234567890,
email: "xyz@email.com"

level: 5,
group: "dev",

AN

| Embedded
’ Sub-Document

Embedded
— Sub-Document

https://docs.mongodb.com/manual/reference/database-references/

DATA MANAGEMENT AND VISUALIZATION

36

https://docs.mongodb.com/manual/reference/database-references/

Comparison query operators

Name

Description

Seq or

Matches values that are equal to a specified value

Sgt

Matches values that are greater than a specified value

Sgte

Matches values that are greater than or equal to a specified
value

Sin

Matches any of the values specified in an array

Slt

Matches values that are less than a specified value

Slte

Matches values that are less than or equal to a specified value

Sne

Matches all values that are not equal to a specified value,
including documents that do not contain the field.

Snin

Matches none of the values specified in an array

DATA MANAGEMENT AND VISUALIZATION

38

Comparison operators (>)

FROM people
WHERE age > 25

MySQL MongoDB Description
> Sgt greater than
SELECT * db.people.find(

{ age: { $gt: 25 } }
)

DATA MANAGEMENT AND VISUALIZATION

39

Comparison operators (>=)

MySQL MongoDB Description

> Sgt greater than

>= Sgte greater equal then

SELECT * db.people.find(

FROM people { age: { $gte: 25 } }
WHERE age >= 25)

DATA MANAGEMENT AND VISUALIZATION

40

Comparison operators (<)

FROM people
WHERE age < 25

MySQL MongoDB Description

> Sgt greater than

>= Sgte greater equal then
< Slt less than

SELECT * db.people.find(

)

{ age: { $1lt:

25 } }

DATA MANAGEMENT AND VISUALIZATION

41

Comparison operators (<=)

FROM people
WHERE age <= 25

MySQL MongoDB Description

> sgt greater than

>= Sgte greater equal then
< Slt less than

<= Slte less equal then
SELECT * db.people.find(

{ age: { S$lte:
)

25 } }

DATA MANAGEMENT AND VISUALIZATION

42

Comparison operators (=)

FROM people
WHERE age = 25

MySQL MongoDB Description

> sgt greater than

>= Sgte greater equal then

< Slt less than

<= Slte less equal then

= Seq equal to
The $eqg expression is equivalent
to
{ field: <value> }.

SELECT * db.people.find(

{ age: { $eq: 25 } }

)

DATA MANAGEMENT AND VISUALIZATION

43

Comparison operators (=)

MySQL MongoDB Description

> sgt greater than

>= Sgte greater equal then

< SHR less than

<= Slte less equal then

= Seq equal to

1= Sne Not equal to

SELECT * db.people.find(

FROM people { age: { $ne: 25 } }
WHERE age != 25)

DATA MANAGEMENT AND VISUALIZATION

A

Conditional operators

To specify multiple conditions, conditional operators are used

MongoDB offers the same functionalities of MySQL with a different
syntax.

MySQL MongoDB Description

AND , Both verified

OR Sor At least one verified

DATA MANAGEMENT AND VISUALIZATION

Conditional operators (AND)

MySQL MongoDB Description

AND ’ Both verified

SELECT * db.people.find (
FROM people { status: "A",
WHERE status = "A" age: 50 }
AND age = 50)

DATA MANAGEMENT AND VISUALIZATION

46

Conditional operators (OR)

MySQL MongoDB Description

Both verified

AND ;
OR Sor At least one verified
SELECT * db.people.find (

FROM people { Sor:

WHERE status = "A" [{ status: "A" } ,
OR age = 50 { age: 50 }

DATA MANAGEMENT AND VISUALIZATION

Type of read operations (1)

Count
db.people. count({ age: 32})

Comparison
db.people. find({ age: {$gt: 32}) // or equivalently with $gte, slt, slte,
db.people.find({ age: {$in: [32, 40]}) // returns all documents having age either 32 or 40

db.people.find({ age: { $gt: 25, $lte: 50} 3) /[returns all documents having age > 25 and age <= 5o

Logical
db.people.find({ name: {$not: {seq: "Max"}1})

db.people.find({ $or: [fage: 32}, fage: 33} 1})

DATA MANAGEMENT AND VISUALIZATION

48

Type of read operations (2)

db.items.find(§
$and: [

{sor: [{qty: {slt: 158, {qty: {$gt: 5o} 13,
fsor: [{sale: true}, {price: {slt: 5}}

This query returns documents (items) that satisfy both these conditions:
1. Quantity sold either less than 15 or greater than 5o

2. Eitherthe itemis on sale (field “sale”: true) or its price is less than g

DATA MANAGEMENT AND VISUALIZATION

49

Type of read operations (3)

Element
db.inventory.find({ item: null }) /[equality filter
db.inventory.find({item : { $exists: false}}) /| existence filter
db.inventory.find({item : { $type: 10}}) /] type filter

N
ltem: null 2 matches documents that either
contain the item field whose value is null or
that do not contain the item field

ltem: {sexists: false} 2 matches documents that do not contain the item field

Aggregation > Slides on "Data aggregation”

DATA MANAGEMENT AND VISUALIZATION

5o

Type of read operations (4)

Embedded Documents

db.inventory.find({ size: { h: 14, w: 21, uom: "cm"}})

Select all documents where the field size equals the exact document { h: 14, w: 21, uom: "cm"}

db.inventory.find({ "size.uom": "in"})

To specify a query condition on fields in an embedded/nested document, use dot notation

db.inventory.find({ "size.h": { slt: 153})

Dot notation and comparison operator

DATA MANAGEMENT AND VISUALIZATION

51

Cursor

*db.collection.find () gives backa cursor. It can be used to iterate over the
result or as input for next operations.

°E.q,,
o Ccursor.sort ()
ocursor.count ()
ocursor.forEach() //shell method
ocursor.limit ()
ocursor.max ()
ocursor.min ()

ocursor.pretty ()

Cursor: sorting data

°Sort is a cursor method
°*Sort documents

osort({<list of field:value pairs>});
ofield specifies which filed is used to sort the returned documents
ovalue = -1 descending order

oValue =1 ascending order

*Multiple field: value pairs can be specified
oDocuments are sort based on the first field

oln case of ties, the second specified field is considered

Cursor: sorting data

Sorting data with respect to a given field in sort() operator

MySQL clause MongoDB operator

ORDER BY sort ()

SELECT * db.people.find(
FROM people { status: "A" }
WHERE status = "A") .sort({ age: 1 })
ORDER BY age ASC

Returns all documents having status="A". The result is sorted in ascending age order

DATA MANAGEMENT AND VISUALIZATION

Cursor: sorting data

Sorting data with respect to a given field in sort() operator

MySQL clause MongoDB operator

ORDER BY sort ()

SELECT * db.people.find(

FROM people { status: "A" }
WHERE status = "A") .sort({ age: 1 })
ORDER BY age ASC

SELECT * db.people.find (

FROM people { status: "A" }
WHERE status = "A") .sort({ age: -1 })
ORDER BY age DESC

Returns all documents having status="A". The result is sorted in ascending age order

Returns all documents having status = "A”. The result is sorted in descending age order

DATA MANAGEMENT AND VISUALIZATION

55

Cursor: counting

MySQL clause

MongoDB operator

COUNT

count ()or find () .count ()

SELECT COUNT (*)
FROM people

db.people.count ()
or
db.people.find () .count ()

DATA MANAGEMENT AND VISUALIZATION

56

Cursor: counting

MySQL clause MongoDB operator
COUNT count ()or find () .count ()
SELECT COUNT (*) db.people.count ()
FROM people or
db.people.find () .count ()
SELECT COUNT (*) db.people.count (status: "A")}
WHERE status = "A" or
FROM people db.people.find({status: "A"}).count()

DATA MANAGEMENT AND VISUALIZATION

57

Cursor: counting

MySQL clause

MongoDB operator

COUNT

count ()or find () .count ()

SELECT COUNT (*)
FROM people

or

db.people.count ()

db.people.find () .count ()

SELECT COUNT (*)
WHERE status = "A"
FROM people

or

db.people.count (status: "A")}

db.people.find({status: "A"}) .count ()

SELECT COUNT (*)
FROM people
WHERE age > 30

{ age:
)

db.people.count (

{ Sgt: 30 } }

Similar to the find() operator, count() can embed conditional statements.

DATA MANAGEMENT AND VISUALIZATION

58

Cursor: forEach()

forEach applies a JavaScript function to apply to each document from the cursor.

db.people.find({status: "AY}) .forEach (
function (myDoc) {
print ("user:”+myDoc.name) ;

})

Select documents with status="A" and print the document name.

DATA MANAGEMENT AND VISUALIZATION 59

MongoDB

Databases and collections.
Update operations

Document update

°Back at the C.R.U.D. operations, we can now see how documents
can be updated using:

db.collection.updateOne(<filter>, <update>, <options>)

db.collection.updateMany(<filter>, <update>, <options>)

o<filter> =filter condition. It specifies which documents must be updated
o<update> = specifies which fields must be updated and their new values

o<options> =specific update options

DATA MANAGEMENT AND VISUALIZATION 61

Document update

°E.qg.,
db.inventory.updateMany (
{ "gty": { $1t: 50 } },
{
Sset: { "size.uom": "in", status: "P" },

ScurrentDate: { lastModified: true }

)
o This operation updates all documents with gty<so

olt sets the value of the size.uom field to "in", the value of the status field to
"P" and the value of the lastModified field to the current date.

DATA MANAGEMENT AND VISUALIZATION 62

Updating data

Tuples to be updated should be selected using the WHERE
statements

MySQL clause MongoDB operator
UPDATE <table> db.<table>.updateMany (
SET <statement> { <condition> },

WHERE <condition> { Sset: {<statement>} }

DATA MANAGEMENT AND VISUALIZATION

Updating data

MySQL clause MongoDB operator

UPDATE <table> db.<table>.updateMany (

SET <statement> { <condition> },

WHERE <condition> { Sset: {<statement>}}
)

UPDATE people db.people.updateMany (

SET status = "C" {age: { Sgt: 25 } 1},

WHERE age > 25 {Sset: { status: "C"}}
)

DATA MANAGEMEI\EQ\ND VISUALIZATION

Updating data

MySQL clause MongoDB operator

UPDATE <table> db.<table>.updateMany (

SET <statement> { <condition> },

WHERE <condition> { Sset: {<statement>}}
)

UPDATE people db.people.updateMany (

SET status = "C" {age: { Sgt: 25 } 1},

WHERE age > 25 {Sset: { status: "C"}}
)

UPDATE people db.people.updateMany (

SET age = age + 3 { status: "A" } ,

WHERE status = "A" { $inc: { age: 3 } }
) \

~N

The $Sinc operator increments a field by a specified value

DATA MANAGEMENQ@ND VISUALIZATION

https://docs.mongodb.com/manual/reference/operator/update/inc/#up._S_inc

4

‘é\n‘j’ _,.,A # Politecnico
ey e

i
&
il

T:::::n’.iii"llll u di Torino Mon go DB

59 M

-\ g 4.‘0“

Data aggregation pipeline

General concepts

*Documents enter a multi-stage pipeline that transforms the documents of a
collection into an aggregated result

*Pipeline stages can appear multiple times in the pipeline

o exceptions sout, $merge, and sgeoNear stages

*Pipeline expressions can only operate on the current document in the pipeline and
cannot refer to data from other documents: expression operations provide in-memory
transformation of documents (max 100 Mb of RAM per stage).

*Generally, expressions are stateless and are only evaluated when seen by the
aggregation process with one exception: accumulator expressions used in the $group
stage (e.g. totals, maximums, minimums, and related data).

*The aggregation pipeline provides an alternative to map-reduce and may be the
preferred solution for aggregation tasks since MongoDB introduced the saccumulator
and $function aggregation operators starting in version 4.4

DATA MANAGEMENT AND VISUALIZATION 67

Aggregation Framework

SQL

MongoDB

WHERE

Smatch

GROUP BY

Sgroup

HAVING

Smatch

SELECT

Sproject

ORDER BY

Ssort

//LIMIT

Slimit

SUM

Ssum

COUNT

Ssum

DATA MANAGEMENT AND VISUALIZATION

68

Aggregation pipeline

°Aggregate functions can be applied to collections to group documents

db.collection.aggregate({ <set of stages>})

oCommon stages: Smatch, S$Sgroup ..
o The aggregate function allows applying aggregating functions (e.g. sum, average, ..)

olt can be combined with an initial definition of groups based on the grouping fields

DATA MANAGEMENT AND VISUALIZATION 69

Aggregation example (1)

db.people.aggregate (|
{ $group: { id: null,
mytotal: { Ssum: "Sage" 1},

mycount: { Ssum: 1 }

1)
°Considers all documents of people and

o sum the values of their age

o sum a set of ones (one for each document)

*The returned value is associated with a field called "mytotal” and a field "mycount”

DATA MANAGEMENT AND VISUALIZATION 70

Aggregation example (2)

db.people.aggregate ([
{ Sgroup: { id: null,
myaverage: { Savg: "Sage" 1},

mytotal: { S$Ssum: "Sage" }

}

1)
o Considers all documents of people and computes

= sum of age

= average of age

Aggregation example (3)

db.people.aggregate ([Where conditions
{ Smatch: {status: "A"} }F{

{ $group: { id: null,

count: { Ssum: 1 }

}

1)
o Counts the number of documents in people with status equal to "A”

Aggregation in "Group By”

MySQL clause MongoDB operator

GROUP BY aggregate (Sgroup)

SELECT status,

AVG (age) AS total
FROM people
GROUP BY status

db.orders.aggregate ([
{
Sgroup: {
_id: "Sstatus",
total: { $Savg: "Sage" }

DATA MANAGEMENT AND VISUALIZATION

73

Aggregation in "Group By”

MySQL clause MongoDB operator

GROUP BY aggregate (Sgroup)

SELECT status,

SUM (age) AS total
FROM people
GROUP BY status

db.orders.aggregate ([
{

Sgroup: {

_iZj: nsstatus", || Group field
total: { Ssum: "$agen }

DATA MANAGEMENT AND VISUALIZATION

74

Aggregation in "Group By”

MySQL clause

MongoDB operator

GROUP BY

aggregate (Sgroup)

SELECT status,
SUM (age)

FROM people

GROUP BY status

AS total

{
Sgroup: {

db.orders.aggregate ([

_id: "Sstatus",

Group field

total:

{ Ssum:

$agen }

Aggregation function

DATA MANAGEMENT AND VISUALIZATION

75

Aggregation in “"Group By + Having”

MySQL clause

MongoDB operator

HAVING

aggregate (Sgroup,

Smatch)

SELECT status,

FROM people
GROUP BY status
HAVING total > 1000

SUM (age) AS total

db.orders.aggregate (

{
Sgroup: {

}
}y
{ Smatch: { total:

1)

[

_id: "s$status",
total: { S$sum: "Sage" }

{ Sgt: 1000 } } }

DATA MANAGEMENT AND VISUALIZATION

76

Aggregation in "Group By + Having”

MySQL clause

MongoDB operator

HAVING

aggregate (Sgroup, Smatch)

FROM people

SELECT status,
SUM (age)

GROUP BY status
HAVING total > 1000

AS total

db.orders.aggregate ([

{
Sgroup:
_id:

}

by

{

"Sstatus",

total: { Ssum:

Group stage: Specify
the aggregation field
and the aggregation

n$age" })
function

{ Smatch:
1)

{ total: {

Sgt: 1000 } } }

DATA MANAGEMENT AND VISUALIZATION

77

Aggregation in "Group By + Having”

MySQL clause MongoDB operator

HAVING aggregate (Sgroup, Smatch)

SELECT status,
SUM (age) AS total
FROM people
GROUP BY status
HAVING total > 1000

db.orders.aggregate ([
{ . Group stage: Specify
$gr09p' { the aggregation field
id: "Sstatus", .
= and the aggregation

total: { Ssum: "Sage" } _
\ function

by

==

$match: { total: { $gt: 1000 } } } Match Stage: specify

) the condition as in
HAVING

DATA MANAGEMENT AND VISUALIZATION

Aggregation at a glance

Collection

db.orders.aggregate(
$match phase—»{ $match: { status: "A" } },
$group phase—{ $group: { _id: "$cust_id",total: { $sum: "$amount” } } }
)

{
cust_id: "A1237,
amount: 504,
status: "A"
} {
amount: 58@, Results
{ status: "A"
cust_id: "a123", 3 {
amount: 250,
status: "A" total: 7h@
} { 3
cust_id: "A123",
{ $match > :T::E: Efa $group >
cust_id: "B212",] {
amount: 208,
status: "A" total: 2@@
: ' custid: a2,)
amount: 29@,
{ status: "A"
cust_id: "A123", 1
amount: 308,
status: "D
3}

orders

Pipeline stages (1)

Stage Description

saddFields Adds new fields to documents. Reshapes each document by adding new fields to
output documents that will contain both the existing fields from the input documents
and the newly added fields.

$bucket Categorizes incoming documents into groups, called buckets, based on a specified
expression and bucket boundaries. On the contrary, $group creates a “bucket” for
each value of the group field.

$bucketAuto Categorizes incoming documents into a specific number of groups, called buckets,
based on a specified expression. Bucket boundaries are automatically determined in
an attempt to evenly distribute the documents into the specified number of buckets.

$collStats Returns statistics regarding a collection or view (it must be the first stage)

$count Passes a document to the next stage that contains a count of the input number of
documents to the stage (same as $group+$project)

DATA MANAGEMENT AND VISUALIZATION 8o

Pipeline stages (2)

Stage

Description

$facet

Processes multiple aggregation pipelines within a single stage on the same set of
input documents. Enables the creation of multi-faceted aggregations capable of
characterizing data across multiple dimensions. Input documents are passed to the
$facet stage only once, without needing multiple retrieval.

$geoNear

Returns an ordered stream of documents based on the proximity to a geospatial
point. The output documents include an additional distance field. It must in the first

stage only.

$graphLookup

Performs a recursive search on a collection. To each output document, adds a new
array field that contains the traversal results of the recursive search for that
document.

DATA MANAGEMENT AND VISUALIZATION 81

Example

The $graphLookup operation recursively matches on the
db.employees.aggregate([reporthoF_)and r_|ampe ields in the employées collection, returning
{ the reporting hierarchy for each person.
$graphLookup: { Returns a list of documents such as

{

from: "employees"”, g
_id": 5,

startWith: "$reportsTo",

"name" : "Asya", —
connectFromField: "reportsTo", reportsTot - Ront \ original

: | | — document
connectToField: "name", "reportingHierarchy" : [
as: "reportingHierarchy" {*_id":2, "name": "Dev"},
3 {"_id": 2, "name" : "Eliot", "reportsTo" : "Dev"},
§"_id":3, "name": "Ron", "reportsTo" : "Eliot" }
}]
1) }

DATA MANAGEMENT AND VISUALIZATION 82

Pipeline stages (3)

Stage

Description

$group

Groups input documents by a specified identifier expression and applies the
accumulator expression(s), if specified, to each group. Consumes all input documents
and outputs one document per each distinct group. The output documents only
contain the identifier field and, if specified, accumulated fields.

$indexStats

Returns statistics regarding the use of each index for the collection.

slimit Passes the first n documents unmodified to the pipeline where n is the specified limit.
For each input document, outputs either one document (for the first n documents) or
zero documents (after the first n documents).

$lookup Performs a join to another collection in the same database to filter in documents from

the “joined” collection for processing. To each input document, the $lookup stage
adds a new array field whose elements are the matching documents from the “joined”
collection. The $lookup stage passes these reshaped documents to the next stage.

DATA MANAGEMENT AND VISUALIZATION 83

Pipeline stages (4)

Stage

Description

$match

Filters the document stream to allow only matching documents to pass
unmodified into the next pipeline stage. $match uses standard MongoDB queries.
For each input document, outputs either one document (a match) or zero
documents (no match).

$merge

Writes the resulting documents of the aggregation pipeline to a collection. The
stage can incorporate (insert new documents, merge documents, replace
documents, keep existing documents, fail the operation, process documents with
a custom update pipeline) the results into an output collection. To use

the $merge stage, it must be the last stage in the pipeline.

$out

Writes the resulting documents of the aggregation pipeline to a collection. To use
the $out stage, it must be the last stage in the pipeline.

$project

Reshapes each document in the stream, such as by adding new fields or removing
existing fields. For each input document, outputs one document.

DATA MANAGEMENT AND VISUALIZATION 84

Pipeline stages (5)

Stage

Description

$sample

Randomly selects the specified number of documents from its input.

$set

Adds new fields to documents. Similar to $project, $set reshapes each document in
the stream; specifically, by adding new fields to output documents that contain both
the existing fields from the input documents and the newly added fields. $set is an
alias for saddFields stage. If the name of the new field is the same as an existing field
name (including _id), $set overwrites the existing value of that field with the value of
the specified expression.

$skip

Skips the first n documents where n is the specified skip number and passes the
remaining documents unmodified to the pipeline. For each input document, outputs
either zero documents (for the first n documents) or one document (if after the

first n documents).

$sort

Reorders the document stream by a specified sort key. Only the order changes; the
documents remain unmodified. For each input document, outputs one document.

DATA MANAGEMENT AND VISUALIZATION 85

Pipeline stages (6)

Stage Description

$sortByCount Groups incoming documents based on the value of a specified expression, then computes the
count of documents in each distinct group.

$unset Removes/excludes fields from documents.

sunwind Deconstructs an array field from the input documents to output a document for each element.

Each output document replaces the array with an element value. For each input document,
outputs n documents where n is the number of array elements and can be zero for an empty
array.

DATA MANAGEMENT AND VISUALIZATION 86

MongoDB

Data aggregation examples

Data Model

Given the following collection of books

{
"title":"MongoDb Guide2",

"tag":["mongodb","guide","database"],

"n":200,
"review_score": 2.2,

"price":[["v": 22.22) ['c": "€",|"country": "IT"},
["V": 22.00’ ICII: II£II’ 1 tr‘y": IIUKII}
1,
"aUEhC}S::: i price currency
_id": 1,
“name":"Mario”, price value
surname": "Rossi'}

}

{_id:0bjectId("5fb29b175b99900c3fa24293",
title:”Developing with Python",

n:352
review_score: %
price:[{v: 24.99, c:
{v: 19.49, c:
author: {_id: 2,
name:”John”,
surname: “Black”}

El£’!’

}, -

tag--L-python”,”guide”, “programming”],

number of pages

DATA MANAGEMENT AND VISUALIZATION

88

Example 1

*For each country, select the average price and the average review_score.

°*The review score should be rounded down.

°Show the first 20 results with a total number of books higher than 5o.

Sunwind

db.book.aggregate([

{ sunwind: “$price”},

1)

Build a document
for each entry of
the price array

Result - Sunwind

§"_id": ObJectId("5fb29ae15b99900c3fa24292) "tltle"-"Mongon guide" “tag": [mongodb", "quide”,
"database"], "n": 100, "review_score": 4.3, "price" : {"v" :19.99, "c": " €", "country" : "IT"}, "author": {"_id": 1,
"name" : "Mario", "surname" : "Rossi" }}

{"_id":Objectld("5fb29ae15b99900c3fa24292) "tltle"-"Mongon guide", "tag": [mongodb", "quide”,
"database"], "n": 100, "review_score" : 4.3, "price" : { "v" : 18, "c": "£", "country" : "UK"}, "author": {"_id" : 1,
"name" : "Mario", "surname" : "Rossi" } }

{"_id":Objectld("5fb29b175b99900c3fa24293") "title" : " Developing with Python ", "tag": ["python", gU|de
"programming"], "n" : 352, "review_score" : 4.6, "price" : {"v": 24.99, "c": " €" "country"-"IT"} "author : §
"_id": 2, "name" : "John" "surname" : "Black" } }

{" id" : ObJectId("5fb29b175b99900c3fa24293") “title" : " Developing with Python ", "tag" : ["python", gU|de
"programming"], "n" : 352, "review_score" : 4.6, "price" : {"v":19.49, "c" : "£" "country"-"UK"} "author” : {
"_id": 2, "name" : "John" "surname” : "Black" 11

DATA MANAGEMENT AND VISUALIZATION 91

Sgroup

db.book.aggregate([
{ sunwind: “sprice” },

{ $group: { _id: "g§price.country”},

dot notation to access the

avg_price: { savg: ” gprice.v”,

value of the embedded
document fields

bookcount: {$sum:1},
review: {$avg: ” $review:m

5

count the number
of books (number
of documents)

DATA MANAGEMENT AND VISUALIZATION

Result - Sgroup

§"_id": "UK", "avg_price" : 18.75, "bookcount": 150, "review": 4.3}
§"_id":"IT", "avg_price" : 22.49, "bookcount": 132, "review": 3.9}

§"_id":"US", "avg_price": 22.49, "bookcount": 49, "review": 4.2}

DATA MANAGEMENT AND VISUALIZATION

93

Smatch

db.book.aggregate([
{ sunwind: '$price'},
{ $group: { _id: '$price.country’,

avg_price: { $avg: '$price.v'},

bookcount: {$sum:a},

review: {$avg: 'sreview_sco

}

5 Filter the documents
fsmatch: { bookcount: { sgte: 5o 313}, where bookcount is
1) greater than 50

A

DATA MANAGEMENT AND VISUALIZATION

Result - Smatch

§"_id": "UK", "avg_price" : 18.75, "bookcount": 150, "review": 4.3}

£"_id": "IT", "avg_price": 22.49, "bookcount": 132, "review": 3.9}

Sproject

db.book.aggregate([

f sunwind: '$price'},

{ $group: { _id: '$price.country’,
avg_price: { $avg: 'sprice.v'},
bookcount: {$sum:a},
review: {$avg: 'sreview_score'}

}

3
f$match: { bookcount: { sgte: 5o 11},

¥

{$project: favg_price: 1, review: { $floor: 'sreview' 13},

1)

DATA MANAGEMENT AND VISUALIZATION

round down the
review score

96

Result - $project

§"_id": "UK", "avg_price" : 18.75, "review": 4}

£"_id": "IT", "avg_price": 22.49, "review" : 3}

Slimit

db.book.aggregate([

f sunwind: 'sprice'},

{ $group: { _id: '$price.country’,

}
5

avg_price: { $avg: 'sprice.v'},
bookcount: {$sum:1},

review: {$avg: 'sreview_score'}

{$match: { bookcount: { sgte: 5o} 13},

{$project: favg_price: 1, review: { $floor: 'sreview' 13},

{$limit:20}

<

1)

Limit the results
to the first 20
documents

DATA MANAGEMENT AND VISUALIZATION

98

Example 2

*Compute the g5 percentile of the number of pages,

*only for the books that contain the tag “guide”.

Smatch

db.book.aggregate([select documents containing

{smatch: {tag : "guide"}} < “‘guide” in the tag array,

1) compare with tag:[“guide”]

Result - Smatch

§"_id": Objectld("sfb2gb175bgggooc3faz4293"), "title" : " Developing with Python", "tag" : ["python",
"guide", "programming"], "n" : 352, "review_score" : 4.6, "prlce" [{"V":24.99,"c":"€", "country" : "IT"},
§"v":19.49, "c": "£", "country":"UK"}], "author": {"_id": 1, "name" : "John", "surname"-"BIack"}}

§£"_id": Objectld("5fb29ae15b99900c3fa24292) "title" : "MongoDb guide", "tag" : ["mongodb”, "guide ,
Ildatabasell] 11 II 100 reVieW_Score" 4 3[prlceII [{II 11 19 99[II n II 11 "COUI’]tI’yu . IIITII} {II 11 IICII .
o "country"-"UK"}] "author": {"_id": 1, "name" : "Mario", "surname"-"RossF'}}

DATA MANAGEMENT AND VISUALIZATION 101

Ssort

db.book.aggregate([

{smatch: {tag : "guide"}}, sort the documents in ascending order

f$sort:{n:1}} | according to the value of the n field, which
1) stores the number of pages of each book

DATA MANAGEMENT AND VISUALIZATION 102

Result - Ssort

£"_id": Objectld("5fb29ae15b99900c3fa24292 "), "title" : "MongoDb guide", "tag" : ["mongodb", "guide
Ildatabasell]I Ilnll : 100’ IIrEView_SCOI’eu 4 3[prlce" [{ 1, ,n 19 99[1 II . II 1 Ilcountryll . IIITII} {II 1 "C" .
"g", "country": "UK"}], "author": {"_id": 1, "name" : "Mario", "surname" : "R055|" 1}

£"_id": ObJectId("5fb29b175b99900c3fa24293") "tltle"-" Developing with Python", "tag" : ["python",
gU|de" "programming"], "n" : 352, "review_score" : 4.6, prlce" [{"V":24.99, "c":"€", "country" : "IT"},
{II 11 19 49[11 II_ II 11 Ilcountryll_ IIUKII}] aUthor" : {Il_idll 1 r.]amell . IIJOhnII "SUI"name" . IIBlaCkII}}

DATA MANAGEMENT AND VISUALIZATION 103

Sgroup + $push

db.book.aggregate([
{smatch: {tag: "guide"}},

st s i 1 group all the records

{sgroup: { id:null, value: {spush: "sn"}}} together inside a single
1) \ document (_id:null),
which contains an array
with all the values of n
of all the records

DATA MANAGEMENT AND VISUALIZATION 104

Result - Sgroup + $push

§"_id": null, "value": [100, 352, ...]}

Sproject + S$arrayElemAt

db.book.aggregate([
{$match: {tag: "quide"}},
f$sort: {n:1}},
{$group: {_id:null, value: {$push: "$n"}}},

g get the value of the array at a given index

{"ng5p": [sarrayElemAt: |« with { $arrayElemAt: [<array>, <idx>]}
["svalue”,

{$floor: {smultiply: [0.95, {$size: "$value"}]}}

R
33

compute the index at 95% of the array length

DATA MANAGEMENT AND VISUALIZATION 106

Result - $project + SarrayElemAt

§"_id": null, "nggp" : 420}

Example 3

*Compute the median of the review_score,

*only for the books having at least a price whose value is higher than 20.0.

Solution

db.book.aggregate([

{$match: {'price.v': { $gt: 201} },

§$sort : {review_score: 1} },

{$group: {_id:null, rsList: {$push: '$sreview_score'}}3,

{$project:

{'median': {$arrayElemAt:

['$rsList’,
{$floor: {smultiply: [0.5, {$size: '$rsList'}]}}

3}

DATA MANAGEMENT AND VISUALIZATION 109

P %,
"‘f%A_ .A,ﬁ%'-' Politecnico

\.IIIIImm---l.n-.ilumnlllll % di Torino
\\\ 1859 ,f.’
R

Indexing

MongoDB

Indexes

*Without indexes, MongoDB must perform a collection scan, i.e. scan
every document in a collection, to select those documents that match the
query statement.

°Indexes are data structures that store a small portion of the collection’s
data set in a form easy to traverse.

*They store ordered values of a specific field, or set of fields, in order to
efficiently support

o equality matches,
orange-based queries and

osorting operations.

DATA MANAGEMENT AND VISUALIZATION

Indexes

Collection Query Ciriteria Sort order

. '

db.users.find()Y.sort({ score: -1 })

{ score: 1 } Index

min max

{ { { { { { t |8

score: 25, score: 56,| score: 45, score: 75, score: 5, score: 40, score: 18, score: 30,

users

Indexes

°*MongoDB creates a unique index on the _id field during the creation of a
collection.

°The _id index prevents clients from inserting two documents with the
same value for the _id field.

*You cannot drop this index on the _id field.

DATA MANAGEMENT AND VISUALIZATION 113

Create new indexes

*Creating an index

db.collection.createIndex (<index keys>, <options>)

oBeforev.3.0use db.collection.ensureIndex ()

*Options include:

oname -amnemonic name given by the user, you cannot rename an index once
created, instead, you must drop and re-create the index with a new name

ounique -whetherto accept or notinsertion of documents with duplicate keys,

obackground, dropDups, ...

DATA MANAGEMENT AND VISUALIZATION 114

Indexes

MongoDB provides different data-type indexes
Single field indexes
Compound field indexes

Multikey indexes (to index the content stored in arrays, MongoDB creates separate
index entries for every element of the array)

Geospatial indexes (2d indexes with planar and 2dsphere with spherical geometry)

Text indexes (searching for string content in a collection, they do not store

language-specific stop words, e.g., "the", "a", "or", and stem the words in a collection
to only store root words

Hashed indexes (indexes the hash of the value of a field, they have a more random
distribution of values along their range, but only support equality matches and
cannot support range-based queries)

DATA MANAGEMENT AND VISUALIZATION 115

Indexes

°Single field indexes

o Support user-defined ascending/descending indexes on a single field of a document
°E.qg,,

odb.orders.createlIndex({orderDate: 1})

°*Compound field indexes

o Support user-defined indexes on a set of fields
°E.qg,,

odb.orders.createlIndex({orderDate: 1, zipcode: -1})

Indexes

*MongoDB supports efficient queries of geospatial data

*Geospatial data are stored as:
o GeoJSON objects: embedded document { <type>, <coordinate>}
= E.g., location: {type: "Point", coordinates: [-73.856, 40.848]}

o Legacy coordinate pairs: array or embedded document

= point: [-73.856, 40.848]

°Fields with 2dsphere indexes must hold geometry data in the form of
coordinate pairs or GeoJSON data.

o If you attempt to insert a document with non-geometry data in a 2dsphere indexed field, or build a 2dsphere
index on a collection where the indexed field has non-geometry data, the operation will fail.

DATA MANAGEMENT AND VISUALIZATION 117

Indexes

*Geospatial indexes

o Two type of geospatial indexes are provided: 2d and 2dsphere

*A 2dsphere index supports queries that calculate geometries on an
earth-like sphere

°Use a 2d index for data stored as points on a two-dimensional plane.
°E.qg,,
odb.places.createlIndex({location: “2dsphere”})

*Geospatial query operators

o $geolntersects, $geoWithin, $near, $nearSphere

DATA MANAGEMENT AND VISUALIZATION 118

Indexes

Snear syntax:

{

<location field>:
Snear: {
Sgeometry: {

{

type: "Point" ,
coordinates: [<longitude> , <latitude>

by

SmaxDistance:
SminDistance:

<distance 1in meters>,
<distance 1n meters>

]

DATA MANAGEMENT AND VISUALIZATION

119

Indexes

°E.qg,,
odb.places.createlIndex({location: “2dsphere”})
*Geospatial query operators

o $geolntersects, $geoWithin, $near, $nearSphere

*Geopatial aggregation stage

o $near

Indexes

°E.q,,
odb.places.find({location:
{Snear:
{Sgeometry: {
type: "Point",
coordinates: [-73.96, 40.78 1 1},

SmaxDistance: 5000}
F1)

o Find all the places within ooo meters from the specified GeoJSON point, sorted in order from nearest
to furthest

Indexes

*Text indexes
o Support efficient searching for string content in a collection
o Text indexes store only root words (no language-specific stop words or stem)
°E.qg,,
db.reviews.createlIndex({comment: “text”})
oWildcard ($**) allows MongoDB to index every field that contains string data
oE.qg.,

db.reviews.createIndex ({“WS**”: “text”})

VIEWS

A queryable object whose contents are defined by an aggregation pipeline on other collections or views.
MongoDB does not persist the view contents to disk. A view’s content is computed on-demand.

Starti_n?_ in version 4.2, MongoDB adds the $merge stagae for the aggregation pipeline to create on-demand
materialized views, where the content of the output collection can be updated each time the pipeline is run.

Read-only views from existing collections or other views. E.qg.:
excludes private or confidential data from a collection of employee data
adds computed fields from a collection of metrics
joins data from two different related collections

db.runCommand({
create: <view>, viewOn: <source>, pipeline: <pipeline>, collation: <collation>})

Restrictions
immutable Name

you can modify a view either by dropping and recreating the view or using the collMod comman

DATA MANAGEMENT AND VISUALIZATION 123

MongoDB Compass

GUI for MongoDB

MongoDB Compass

*Visually explore data.
°Available on Linux, Mac, or Windows.

*MongoDB Compass analyzes documents and displays rich
structures within collections.

*Visualize, understand, and work with your geospatial data.

DATA MANAGEMENT AND VISUALIZATION 125

MongoDB Compass

MongoDB Compass - Connect

Connect to Host

Hostname | bigdatadb.polito.it

Port
bigdatadb.palito.it:27017 SRV Record
bigdatadb.p 27017
bigdatadb.palito. 7 Authentication | Username / Password a
bigdatadb 270 Username | Gestionali
Password [ETE T
Authentication Database dbdmg

Replica Set Name

Read Preference | Primary 5

SSL | Unvalidated (insecure) v

SSH Tunnel | Nene v
Favorite Name e.g. Shared Dev, QA Box, PRODUCTION

°Connect to local or remote instances of MongoDB.

DATA MANAGEMENT AND VISUALIZATION 126

MongoDB Compass

MongoDB Compass - bit polito.it:27017 g.Parkings

My Cluster 4 bigdatadb.polito.it:27017 | STANDALONE MongoDB 3.6.14 Community

dbdmg.Parkings oocuments 100 4s.4kB 496 inoexes O KB

Documents Ag) 3 Scherr Exolain P

v dbdmg

Bookings » OPTIONS m RESET -=*

Parkings
INSERT DOCUMENT R[3% LST = B8 TABLE Displaying documents 1-200f 100 < > ¢C
Parkings
_id ObjectId plate Int32 fuel Int32 vendor String final_time Int32 loc Object
59bef@cd2ad 2c2a6009 442 87 1505685847 {} 2 fields

MongoDB Compass - bigdatadb.polito.it:27017/dbdmg. Parkings

59befBcd2ad8532c2a60093: 227
STANDALONE SRR
1952ad: 32¢2a600a83 175
1c62ad8532c2a600ae5 130 dbdmg.Parkings oocusents 100 woexes 5
59bef25c2ad8532c2a600bea 335 Documents Valid,

v dbimg
2ad8532c2a600be7 132 Bookiogs vormons | [ENER reser -

Parkings
340 o m VIEW = UST @ TABLE Displaying documents 1-200f 100 < > €

Sz 22 s @08
35
2a600c9¢ 222
init_tine: 1505685697
59bef31d2ad 2c2a600d3c 379 vin: VINA4,
smartPhoneRequired: true
T init_date: 2017-09-18T00:
2a600dac 207 exterior: “GO0!
sddress n
interior:
M final_date:
engineType
369 city: T
86
_id: ! 0)
330 plate
tuel: 18
vendor; "ca
54 final_tine:
Toc: Gbject
5 32c2a600ebd 309 init_time: 1505685697
vin: VIN
smartPhoneRequired: true
146 7-09-18T0D:01:
132ad8532c2a600113 228 L

yendor: 3200

°*Get an overview of the data in list or table format.

DATA MANAGEMENT AND VISUALIZATION 127

MongoDB Compass

My Cluster 4 bigdatadb.polito.it:27017 | STANDALONE MongoDB 3.6.14 Community
c < . TOTAL SIZE AVG. SIZE TOTAL SIZE AVG. SIZE
dbdmg'ParkmgS oocuments 100 2zake 40 woexes O 55.9kE 11.2¢
Q
Documents L Schema lidatior
v dbdmg
Bookings » OPTIONS ANALYZE RESET
Parkings) ‘
Query returned 100 documents. This report is based on a sample of 100 documents (100.00%). €

loc
oo
ording L™ >a
= . Te
& (] 0
LIMA o® e
eq °
.
%
® *a,Turin
5 °
& o
L)
LA Y
L e
°
4 L]
“ o
.
° b0 (i}
plate
nt32

°Analyze the documents and their fields.

°Native support for geospatial coordinates.

DATA MANAGEMENT AND VISUALIZATION

128

MongoDB Compass

My Cluster

1

dbdmg

Bookings

Parkings

*Visually build the query conditioning on analyzed fields.

4 bigdatadb.polito.it:27017

STANDALONE

dbdmg.Parkings

MongoDB Compass - bigdatadb.polito.it:27017/dbdmg.Parkings

oocuments 100

Schema Expla I X Validal

MongoDB 3.6.14 Community

ioexes D

{interior: 'GO0D',loc: {SgeoWithin: { ScenterSphere: [[7.664

med 100 documents. This report is based on a sample of 100 documents (100.009). €&

interior

string

loc
+ e

coordinates

ordinat = ¢ .,

A
OYIEE

[4

DATA MANAGEMENT AND VISUALIZATION

129

MongoDB Compass

dbdmg.Parkings

Documents Aggregations Schema Explain Plan

°Autcomplete enabled by default
{smart}

- smartPhoneRequired field
Ty

{smartPhoneRequired: true} ~ OPTIONS

.o -~ {init_date: 1, address: 1, engineType: 1}

*Construct the query step by step. {fueun
q y p y p @e o umT 1)

VIEW = LIST B8 TABLE Displaying documen

MongoDB Compass

MongoDB Compass - bigdatadb.polito.it:27017/dbdmg.Parkings
MongoDB 3.6.14 Community

My Cluster 4 bigdatadb.polito.it:27017 [STANDALONE

dbdmg.Parkmgs oocuments 100 mpexes O ¢
ment Aggregations Schema Explain Plan ndex Validation
F— s——
{interior: 'G0OD',loc: {SgeoMithin: { ScenterSphere: [[7.664417178826483, 45.06173368230694], 0.0005190081853820: S ERNONS] m RESET
Parkings
[) °
View Details As VISUAL TREE RAW JSON
Query Performance Summary
s Retumned: 97 wery E (ms): 0
lex Keys Examiny o Sorted in Memory: yes
ar d: 100 No index available for this query.
PROJECTION
rotumcd: EE) Exscution T 0

{’init_date":1,"address":1,"engineType™1}

DETAILS

DETAILS

°Analyze query performance and get hints to speed it up.

DATA MANAGEMENT AND VISUALIZATION

131

MongoDB Compass

MongoDB Compass - bigdatadb.polite.it:27017/dbdmg.Parkings

My Cluster 4 bigdatadb.polito.it:27017 [STANDALONE MongoDB 3.6.14 Community

N
woexes D ¢

dbdmg.Parkings socomens 100 -

Schen xplain Plan Validation

dbdmg

Bookin:

Parkings Validation Action @ ERROR ~ Validation Level @ STRICT »

1r{
’+ $jsonSchema: {

required: ['exterior', 'interior', 'vendor', 'fuel'l,
4~ properties: {|
5 vendor: {
[bsonType: “string”,

description: “must be a string”

8 L,
) - fuel: {
bsonType: “int",
description: "must be an integer number"

cce: | (TS

@ Sample Document That Passed Validation © Sample Document That Failed Validation

_id: ObjectId("59befdcd2adB532c2a60093d")
plate: 442

fuel: 37

vendor: "car2go”

final_time: 1505685847

» loc: Object

init_time: 1505685697

No Preview Documents

*Specify contraints to validate data

°Find unconsistent documents.

DATA MANAGEMENT AND VISUALIZATION 132

MongoDB Compass: Aggregation

] = 78557 Documents in the Collection C

> || $mateh ~@ e m o+ i .) .o
°Build a pipeline consisting of
(e~ @0 N multiple aggregation stages

> $match - () (1]] +

< [praen] |@e .

$hucketAuto
* 4 %$collStats

in MQL. °Define the filter and aggregation
$iacet attributes for each operator.

$geolNear

[[N 5 I - N N]
1

e e -

$graphLookup
$group

$indexStats
L limit

DATA MANAGEMENT AND VISUALIZATION 133

MongoDB Compass: Aggregation stages

v $group - () (i)] +

1' /ﬂ'#‘

2 * _id - The id of the group.

3 * fieldl - The first field name.
4 g

S+ {

6 _id: "$vendor"”,

7= total: {

& $sum 1

2 1}

10 }

Output after $group stage (Sample of 2 documents}

_id: "car2go” _id:"enjoy"
total: 48423 total: 30134

MongoDB Compass: Aggregation stages

- [tow -~ @e e

1w /**

S e e 2| The _id corresponds to the

4 % .

S GROUP BY parameterin SQL

: . .

L Other fields contain the
attributes required for each
group.

Output after $group stage (Sample of 2 documents)
_id: "car2go" _id: "enjoy"
total: 48423 total: 30134

One group for each “vendor”.

DATA MANAGEMENT AND VISUALIZATION 135

MongoDB Compass: Pipelines

~ S$group ~®@e &

Output after $group stage (Sample of 2 documents)

1' ¥k
2 * _id he id of the group.
3 : ieldl The first field name _id: "car2go” _id: "enjoy"
4 total: 48423 total: 30134
5+{ avg_fuel: 64.88284492906264 avg_fuel: 61.03381562354815
6 _id: "$wvendor",
7 total: { $sum: 1 },
8 avg_fuel : {$avg : "$fuel"}
9
16
st . i
1%t stage: grouping by vendor
v $match v (:IO i +
_l . 3 Ty . Output after $match stage (Sample of 1 document)
Z * guery The query in MJL.
4 q
5 avg_fuel: {$gt: 63}, e
total : {$g‘t ' 35[']@{-)} avg_fuel: 64.88284492006264

= &

}

2"d stage: condition over fields created in the previous
stage (avg fuel, total).

DATA MANAGEMENT AND VISUALIZATION 136

