
Introduction to MongoDB

D A N I E L E A P I L E T T I

P O L I T E C N I C O D I T O R I N O

NoSQL Databases

Introduction

•The leader in the NoSQL Document-based databases

•Full of features, beyond NoSQL:

oHigh performance

oHigh availability

oNative scalability

oHigh flexibility

oOpen source

2DATA MANAGEMENT AND VISUALIZATION

DATA MANAGEMENT AND VISUALIZATION 3

Terminology – Approximate mapping

Relational database MongoDB

Table Collection

Record Document

Column Field

Document Data Design

•High-level, business-ready representation of the data

oRecords are stored into BSON Documents

▪ BSON is a binary representation of JSON documents

▪ field-value pairs

▪ may be nested

DATA MANAGEMENT AND VISUALIZATION 4

https://docs.mongodb.com/manual/reference/glossary/#std-term-JSON

Document Data Design
•High-level, business-ready representation of the data

•Mapping into developer-language objects
odate, timestamp, array, sub-documents, etc.

•Field names
oThe field name _id is reserved for use as a primary key; its value must be unique in the

collection, is immutable, possibly autogenerated, and may be of any type other than an array.

oField names cannot contain the null character.

oThe server permits storage of field names that contain dots (.) and dollar signs ($)

oBSON documents may have more than one field with the same name. Most MongoDB
interfaces, however, represent MongoDB with a structure (e.g., a hash table) that does not
support duplicate field names.

oThe maximum BSON document size is 16 megabytes. To store documents larger than the
maximum size, MongoDB provides GridFS.

oUnlike JavaScript objects, the fields in a BSON document are ordered.

DATA MANAGEMENT AND VISUALIZATION 5

Databases and collections.
Create and delete operations

MongoDB

Databases and Collections

DATA MANAGEMENT AND VISUALIZATION 7

•Each instance of MongoDB can manage multiple databases

•Each database is composed of a set of collections

•Each collection contains a set of documents

oThe documents of each collection represent similar “objects”

oHowever, remember that MongoDB is schema-less

oYou are not required to define the schema of the documents a-priori and objects of the same
collections can be characterized by different fields

oStarting in MongoDB 3.2, you can enforce document validation rules for a collection during
update and insert operations.

Databases and Collections

DATA MANAGEMENT AND VISUALIZATION 8

•Show the list of available databases

•Select the database you are interested in

•E.g.

ouse deliverydb

show databases

use <database-name>

Databases and Collections

DATA MANAGEMENT AND VISUALIZATION 9

•Create a database and a collection inside the database

o Select the database by using the command “use <database name>”

o Then, create a collection

▪ MongoDB creates a collection implicitly when the collection is first referenced in a command

•Delete/Drop a database

o Select the database by using “use <database name>”

o Execute the command

E.g.,

use deliverydb;

db.dropDatabase();

db.dropDatabase()

Databases and Collections

DATA MANAGEMENT AND VISUALIZATION 10

•A collection stores documents, uniquely identified by a document “_id”

•Create collections

oThe collection is associated with the current database. Always select the database
before creating a collection.

oOptions related to the collection size and indexing, e.g., to create a capped
collection, or to create a new collection that uses document validation

•E.g.,

o db.createCollection(“authors”, {capped: true});

db.createCollection(<collection name>, <options>);

Databases and Collections

DATA MANAGEMENT AND VISUALIZATION 11

•Show collections

•Drop collections

•E.g.
o db.authors.drop()

show collections

db.<collection_name>.drop()

12

C.R.U.D. Operations

DATA MANAGEMENT AND VISUALIZATION 12

•Delete

•Read

•Update

•Create

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 13

•Insert a single document in a collection

•E.g.,

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

db.<collection name>.insertOne({<set of the field:value pairs of the new document>});

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 14

•Insert a single document in a collection

•E.g.,

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

Field

name

db.<collection name>.insertOne({<set of the field:value pairs of the new document>});

•Insert a single document in a collection

•E.g.

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 15

Field value

db.<collection name>.insertOne({<set of the field:value pairs of the new document>});

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 16

•Insert a single document in a collection

Now people contains a new document representing a user with:

user_id: "abc123",

age: 55

status: "A"

db.<collection name>.insertOne({<set of the field:value pairs of the new document>});

•E.g.,

db.people.insertOne({

user_id: "abc124",

age: 45,

favorite_colors: ["blue", "green"]

});

Now people contains a new document representing a user with:

user_id: "abc124", age: 45 and an array favorite_colors containing
the values "blue" and "green"

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 17

Favorite_colors is

an array

•E.g.,

db.people.insertOne({

user_id: "abc124",

age: 45,

address: {

street: "my street",

city: "my city"

}

});

Example of a document containing a nested document

Create: insert one document

DATA MANAGEMENT AND VISUALIZATION 18

Nested document

Create: insert many documents

DATA MANAGEMENT AND VISUALIZATION 19

•Insert multiple documents in a single statement:

db.products.insertMany([

{ user_id: "abc123", age: 30, status: "A"},

{ user_id: "abc456", age: 40, status: "A"},

{ user_id: "abc789", age: 50, status: "B"}

]);

db.<collection name>.insertMany([<comma separated list of documents>]);

•Insert many documents with one single command

•E.g.,

db.people.insertMany([

{user_id: "abc123", age: 55, status: “A”},

{user_id: "abc124", age: 45, favorite_colors: ["blue", "green"]}

]);

Create: insert many documents

DATA MANAGEMENT AND VISUALIZATION 20

db.<collection name>.insertMany([<comma separated list of documents>]);

Delete

DATA MANAGEMENT AND VISUALIZATION 21

•Delete existing data, in MongoDB corresponds to the deletion of
the associated document.

oConditional delete

oMultiple delete

MySQL clause MongoDB operator

DELETE FROM deleteMany()

DATA MANAGEMENT AND VISUALIZATION 22

Delete

MySQL clause MongoDB operator

DELETE FROM deleteMany()

DELETE FROM people

WHERE status = "D"

db.people.deleteMany(

{ status: "D" }

)

DATA MANAGEMENT AND VISUALIZATION 23

Delete

DELETE FROM people db.people.deleteMany({})

MySQL clause MongoDB operator

DELETE FROM deleteMany()

DELETE FROM people

WHERE status = "D"

db.people.deleteMany(

{ status: "D" }

)

Databases and collections.
Querying data (find operations)

MongoDB

Query language

DATA MANAGEMENT AND VISUALIZATION 25

•Most of the operations available in SQL language can be expressend in
MongoDB language

MySQL clause MongoDB operator

SELECT find()

SELECT *

FROM people

db.people.find()

Read data from documents

DATA MANAGEMENT AND VISUALIZATION 26

•Select documents

db.<collection name>.find({<conditions>}, {<fields of interest>});

Read data from documents (Filter conditions)

DATA MANAGEMENT AND VISUALIZATION 27

•Select documents

•Select the documents satisfying the specified conditions and specifically
only the fields specified in fields of interest

o<conditions> are optional

▪ conditions take a document with the form:

{field1 : <value>, field2 : <value> ... }

▪ Conditions may specify a value or a regular expression

db.<collection name>.find({<conditions>}, {<fields of interest>});

Read data from documents (Project fields)

DATA MANAGEMENT AND VISUALIZATION 28

•Select documents

•Select the documents satisfying the specified conditions and specifically
only the fields specified in fields of interest

o<fields of interest> are optional

▪ projections take a document with the form:

{field1 : <value>, field2 : <value> ... }

▪ 1/true to include the field, 0/false to exclude the field

db.<collection name>.find({<conditions>}, {<fields of interest>});

DATA MANAGEMENT AND VISUALIZATION 29

find() operator (1)

SELECT id,

user_id,

status

FROM people

db.people.find(

{ },

{ user_id: 1,

status: 1

}

)

DATA MANAGEMENT AND VISUALIZATION 30

find() operator (2)

Where Condition

Select fields

SELECT id,

user_id,

status

FROM people

db.people.find(

{ },

{ user_id: 1,

status: 1

}

)

MySQL clause MongoDB operator

SELECT find()

DATA MANAGEMENT AND VISUALIZATION 31

find() operator (3)

MySQL clause MongoDB operator

SELECT find()

WHERE find({<WHERE CONDITIONS>})

SELECT *

FROM people

WHERE status = "A"

db.people.find(

{ status: "A" }

)

Where Condition

DATA MANAGEMENT AND VISUALIZATION 32

find() operator (4)

MySQL clause MongoDB operator

SELECT find()

WHERE find({<WHERE CONDITIONS>})

SELECT user_id, status

FROM people

WHERE status = "A"

db.people.find(

{ status: "A" },

{ user_id: 1,

status: 1,

_id: 0

}

)

Where Condition

Selection fields
By default, the _id field is always returned.
To remove it, you must explicitly indicate _id: 0

DATA MANAGEMENT AND VISUALIZATION 33

find() operator (5)

MySQL clause MongoDB operator

SELECT find()

WHERE find({<WHERE CONDITIONS>})

db.people.find(

{"address.city":“Rome" }

)

nested document

{ _id: "A",

address: {

street: “Via Torino”,

number: “123/B”,

city: “Rome”,

code: “00184”

}

}

Read data from one document

DATA MANAGEMENT AND VISUALIZATION 34

•Select a single document

•Select one document that satisfies the specified query criteria.

oIf multiple documents satisfy the query, it returns the first one according
to the natural order which reflects the order of documents on the disk.

db.<collection name>.findOne({<conditions>}, {<fields of interest>});

(No) joins

DATA MANAGEMENT AND VISUALIZATION 35

•No join operator exists (but $lookup)

oYou must write a program that

▪ Selects the documents of the first collection you are interested in

▪ Iterates over the documents returned by the first step, by using the loop statement provided by
the programming language you are using

▪ Executes one query for each of them to retrieve the corresponding document(s) in the other
collection

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup

(No) joins

DATA MANAGEMENT AND VISUALIZATION 36

•(no) joins

o Relations among documents/records are provided by

▪ Object_ID (_id), named “Manual reference” in MongoDB, a second query is required

▪ DBRef, a standard approach across collections and databases (check the driver compatibility)

https://docs.mongodb.com/manual/reference/database-references/

{ "$ref" : <value>, "$id" : <value>, "$db" : <value> }

https://docs.mongodb.com/manual/reference/database-references/

DATA MANAGEMENT AND VISUALIZATION 38

Comparison query operators

Name Description

$eq or : Matches values that are equal to a specified value

$gt Matches values that are greater than a specified value

$gte Matches values that are greater than or equal to a specified
value

$in Matches any of the values specified in an array

$lt Matches values that are less than a specified value

$lte Matches values that are less than or equal to a specified value

$ne Matches all values that are not equal to a specified value,
including documents that do not contain the field.

$nin Matches none of the values specified in an array

DATA MANAGEMENT AND VISUALIZATION 39

Comparison operators (>)

MySQL MongoDB Description

> $gt greater than

SELECT *

FROM people

WHERE age > 25

db.people.find(

{ age: { $gt: 25 } }

)

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

DATA MANAGEMENT AND VISUALIZATION 40

Comparison operators (>=)

SELECT *

FROM people

WHERE age >= 25

db.people.find(

{ age: { $gte: 25 } }

)

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

DATA MANAGEMENT AND VISUALIZATION 41

Comparison operators (<)

SELECT *

FROM people

WHERE age < 25

db.people.find(

{ age: { $lt: 25 } }

)

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

<= $lte less equal then

DATA MANAGEMENT AND VISUALIZATION 42

Comparison operators (<=)

SELECT *

FROM people

WHERE age <= 25

db.people.find(

{ age: { $lte: 25 } }

)

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

<= $lte less equal then

= $eq equal to

The $eq expression is equivalent

to

{ field: <value> }.

DATA MANAGEMENT AND VISUALIZATION 43

Comparison operators (=)

SELECT *

FROM people

WHERE age = 25

db.people.find(

{ age: { $eq: 25 } }

)

DATA MANAGEMENT AND VISUALIZATION 44

Comparison operators (!=)

SELECT *

FROM people

WHERE age != 25

db.people.find(

{ age: { $ne: 25 } }

)

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

<= $lte less equal then

= $eq equal to

!= $ne Not equal to

Conditional operators

DATA MANAGEMENT AND VISUALIZATION 45

•To specify multiple conditions, conditional operators are used

•MongoDB offers the same functionalities of MySQL with a different
syntax.

MySQL MongoDB Description

AND , Both verified

OR $or At least one verified

MySQL MongoDB Description

AND , Both verified

DATA MANAGEMENT AND VISUALIZATION 46

Conditional operators (AND)

SELECT *

FROM people

WHERE status = "A"

AND age = 50

db.people.find(

{ status: "A",

age: 50 }

)

MySQL MongoDB Description

AND , Both verified

OR $or At least one verified

DATA MANAGEMENT AND VISUALIZATION 47

Conditional operators (OR)

SELECT *

FROM people

WHERE status = "A"

OR age = 50

db.people.find(

{ $or:

[{ status: "A" } ,

{ age: 50 }

]

}

)

Type of read operations (1)

• Count

• Comparison

•Logical

DATA MANAGEMENT AND VISUALIZATION 48

db.people. count({ age: 32 })

db.people. find({ age: {$gt: 32 }) // or equivalently with $gte, $lt, $lte,

db.people.find({ age: {$in: [32, 40] }) // returns all documents having age either 32 or 40

db.people.find({ name: {$not: {$eq: ‘‘Max’’ } } })

db.people.find({ $or: [{age: 32}, {age: 33}] })

db.people.find({ age: { $gt: 25, $lte: 50 } }) //returns all documents having age > 25 and age <= 50

Type of read operations (2)

This query returns documents (items) that satisfy both these conditions:

1. Quantity sold either less than 15 or greater than 50

2. Either the item is on sale (field “sale”: true) or its price is less than 5

DATA MANAGEMENT AND VISUALIZATION 49

db.items.find({

$and: [

{$or: [{qty: {$lt: 15}}, {qty: {$gt: 50}}]},

{$or: [{sale: true}, {price: {$lt: 5}}]}

]

Type of read operations (3)
• Element

Note:
o Item: null →matches documents that either

▪ contain the item field whose value is null or

▪ that do not contain the item field

o Item: {$exists: false} →matches documents that do not contain the item field

• Aggregation → Slides on “Data aggregation”

DATA MANAGEMENT AND VISUALIZATION 50

db.inventory.find({ item: null }) // equality filter

db.inventory.find({ item : { $type: 10 } }) // type filter

db.inventory.find({ item : { $exists: false } }) // existence filter

Type of read operations (4)

• Embedded Documents

Select all documents where the field size equals the exact document { h: 14, w: 21, uom: "cm" }

To specify a query condition on fields in an embedded/nested document, use dot notation

Dot notation and comparison operator

DATA MANAGEMENT AND VISUALIZATION 51

db.inventory.find({ size: { h: 14, w: 21, uom: "cm" } })

db.inventory.find({ "size.uom": "in" })

db.inventory.find({ "size.h": { $lt: 15 } })

Cursor

DATA MANAGEMENT AND VISUALIZATION 52

•db.collection.find()gives back a cursor. It can be used to iterate over the
result or as input for next operations.

•E.g.,

o cursor.sort()

o cursor.count()

o cursor.forEach() //shell method

o cursor.limit()

o cursor.max()

o cursor.min()

o cursor.pretty()

Cursor: sorting data

DATA MANAGEMENT AND VISUALIZATION 53

•Sort is a cursor method

•Sort documents

o sort({<list of field:value pairs>});

ofield specifies which filed is used to sort the returned documents

ovalue = -1 descending order

oValue = 1 ascending order

•Multiple field: value pairs can be specified

oDocuments are sort based on the first field

o In case of ties, the second specified field is considered

Cursor: sorting data

DATA MANAGEMENT AND VISUALIZATION 54

•Sorting data with respect to a given field in sort() operator

•Returns all documents having status=“A”. The result is sorted in ascending age order

MySQL clause MongoDB operator

ORDER BY sort()

SELECT *

FROM people

WHERE status = "A"

ORDER BY age ASC

db.people.find(

{ status: "A" }

).sort({ age: 1 })

Cursor: sorting data

DATA MANAGEMENT AND VISUALIZATION 55

•Sorting data with respect to a given field in sort() operator

•Returns all documents having status=“A”. The result is sorted in ascending age order

•Returns all documents having status = “A”. The result is sorted in descending age order

MySQL clause MongoDB operator

ORDER BY sort()

SELECT *

FROM people

WHERE status = "A"

ORDER BY age ASC

db.people.find(

{ status: "A" }

).sort({ age: 1 })

SELECT *

FROM people

WHERE status = "A"

ORDER BY age DESC

db.people.find(

{ status: "A" }

).sort({ age: -1 })

DATA MANAGEMENT AND VISUALIZATION 56

Cursor: counting

MySQL clause MongoDB operator

COUNT count()or find().count()

SELECT COUNT(*)

FROM people

db.people.count()

or
db.people.find().count()

SELECT COUNT(*)

FROM people

db.people.count()

or
db.people.find().count()

SELECT COUNT(*)

WHERE status = "A"

FROM people

db.people.count(status: "A")}

or

db.people.find({status: "A"}).count()

DATA MANAGEMENT AND VISUALIZATION 57

Cursor: counting

MySQL clause MongoDB operator

COUNT count()or find().count()

SELECT COUNT(*)

FROM people

db.people.count()

or
db.people.find().count()

SELECT COUNT(*)

WHERE status = "A"

FROM people

db.people.count(status: "A")}

or

db.people.find({status: "A"}).count()

DATA MANAGEMENT AND VISUALIZATION 58

Cursor: counting

MySQL clause MongoDB operator

COUNT count()or find().count()

SELECT COUNT(*)

FROM people

WHERE age > 30

db.people.count(

{ age: { $gt: 30 } }

)

Similar to the find() operator, count() can embed conditional statements.

db.people.find({status: "A“}).forEach(

function(myDoc){

print("user:”+myDoc.name);

})

Cursor: forEach()

DATA MANAGEMENT AND VISUALIZATION 59

•forEach applies a JavaScript function to apply to each document from the cursor.

•Select documents with status=“A” and print the document name.

Databases and collections.
Update operations

MongoDB

Document update

•Back at the C.R.U.D. operations, we can now see how documents
can be updated using:

o<filter> = filter condition. It specifies which documents must be updated

o<update> = specifies which fields must be updated and their new values

o<options> = specific update options

DATA MANAGEMENT AND VISUALIZATION 61

db.collection.updateOne(<filter>, <update>, <options>)

db.collection.updateMany(<filter>, <update>, <options>)

Document update
•E.g.,

db.inventory.updateMany(

{ "qty": { $lt: 50 } },

{

$set: { "size.uom": "in", status: "P" },

$currentDate: { lastModified: true }

}

)

oThis operation updates all documents with qty<50

oIt sets the value of the size.uom field to "in", the value of the status field to
"P", and the value of the lastModified field to the current date.

DATA MANAGEMENT AND VISUALIZATION 62

Updating data

•Tuples to be updated should be selected using the WHERE
statements

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>} }

)

DATA MANAGEMENT AND VISUALIZATION 63

Updating data

DATA MANAGEMENT AND VISUALIZATION64

UPDATE people

SET status = "C"

WHERE age > 25

db.people.updateMany(

{age: { $gt: 25 } },

{$set: { status: "C"}}

)

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>}}

)

Updating data

UPDATE people

SET age = age + 3

WHERE status = "A"

db.people.updateMany(

{ status: "A" } ,

{ $inc: { age: 3 } }

)

The $inc operator increments a field by a specified value

UPDATE people

SET status = "C"

WHERE age > 25

db.people.updateMany(

{age: { $gt: 25 } },

{$set: { status: "C"}}

)

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>}}

)

DATA MANAGEMENT AND VISUALIZATION65

https://docs.mongodb.com/manual/reference/operator/update/inc/#up._S_inc

Data aggregation pipeline

MongoDB

General concepts

•Documents enter a multi-stage pipeline that transforms the documents of a
collection into an aggregated result

•Pipeline stages can appear multiple times in the pipeline

o exceptions $out, $merge, and $geoNear stages

•Pipeline expressions can only operate on the current document in the pipeline and
cannot refer to data from other documents: expression operations provide in-memory
transformation of documents (max 100 Mb of RAM per stage).

•Generally, expressions are stateless and are only evaluated when seen by the
aggregation process with one exception: accumulator expressions used in the $group
stage (e.g. totals, maximums, minimums, and related data).

•The aggregation pipeline provides an alternative to map-reduce and may be the
preferred solution for aggregation tasks since MongoDB introduced the $accumulator
and $function aggregation operators starting in version 4.4

DATA MANAGEMENT AND VISUALIZATION 67

DATA MANAGEMENT AND VISUALIZATION 68

Aggregation Framework

SQL MongoDB

WHERE $match

GROUP BY $group

HAVING $match

SELECT $project

ORDER BY $sort

//LIMIT $limit

SUM $sum

COUNT $sum

Aggregation pipeline

DATA MANAGEMENT AND VISUALIZATION 69

•Aggregate functions can be applied to collections to group documents

oCommon stages: $match, $group ..

oThe aggregate function allows applying aggregating functions (e.g. sum, average, ..)

o It can be combined with an initial definition of groups based on the grouping fields

db.collection.aggregate({ <set of stages> })

Aggregation example (1)

DATA MANAGEMENT AND VISUALIZATION 70

db.people.aggregate([

{ $group: { _id: null,

mytotal: { $sum: "$age" },

mycount: { $sum: 1 }

}

}

])

•Considers all documents of people and

o sum the values of their age

o sum a set of ones (one for each document)

•The returned value is associated with a field called “mytotal” and a field “mycount”

Aggregation example (2)

DATA MANAGEMENT AND VISUALIZATION 71

db.people.aggregate([

{ $group: { _id: null,

myaverage: { $avg: "$age" },

mytotal: { $sum: "$age" }

}

}

])

oConsiders all documents of people and computes

▪ sum of age

▪ average of age

Aggregation example (3)

DATA MANAGEMENT AND VISUALIZATION 72

db.people.aggregate([

{ $match: {status: "A"} } ,

{ $group: { _id: null,

count: { $sum: 1 }

}

}

])

oCounts the number of documents in people with status equal to “A”

Where conditions

DATA MANAGEMENT AND VISUALIZATION 73

Aggregation in “Group By”

MySQL clause MongoDB operator

GROUP BY aggregate($group)

SELECT status,

AVG(age) AS total

FROM people

GROUP BY status

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $avg: "$age" }

}

}

])

DATA MANAGEMENT AND VISUALIZATION 74

Aggregation in “Group By”

MySQL clause MongoDB operator

GROUP BY aggregate($group)

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

}

])

Group field

DATA MANAGEMENT AND VISUALIZATION 75

Aggregation in “Group By”

MySQL clause MongoDB operator

GROUP BY aggregate($group)

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

}

])

Group field

Aggregation function

MySQL clause MongoDB operator

HAVING aggregate($group, $match)

DATA MANAGEMENT AND VISUALIZATION 76

Aggregation in “Group By + Having”

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

HAVING total > 1000

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

},

{ $match: { total: { $gt: 1000 } } }

])

MySQL clause MongoDB operator

HAVING aggregate($group, $match)

DATA MANAGEMENT AND VISUALIZATION 77

Aggregation in “Group By + Having”

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

HAVING total > 1000

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

},

{ $match: { total: { $gt: 1000 } } }

])

Group stage: Specify
the aggregation field
and the aggregation
function

MySQL clause MongoDB operator

HAVING aggregate($group, $match)

DATA MANAGEMENT AND VISUALIZATION 78

Aggregation in “Group By + Having”

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

HAVING total > 1000

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

},

{ $match: { total: { $gt: 1000 } } }

])

Group stage: Specify
the aggregation field
and the aggregation
function

Match Stage: specify
the condition as in
HAVING

DATA MANAGEMENT AND VISUALIZATION 79

Aggregation at a glance

Pipeline stages (1)

Stage Description

$addFields Adds new fields to documents. Reshapes each document by adding new fields to
output documents that will contain both the existing fields from the input documents
and the newly added fields.

$bucket Categorizes incoming documents into groups, called buckets, based on a specified
expression and bucket boundaries. On the contrary, $group creates a “bucket” for
each value of the group field.

$bucketAuto Categorizes incoming documents into a specific number of groups, called buckets,
based on a specified expression. Bucket boundaries are automatically determined in
an attempt to evenly distribute the documents into the specified number of buckets.

$collStats Returns statistics regarding a collection or view (it must be the first stage)

$count Passes a document to the next stage that contains a count of the input number of
documents to the stage (same as $group+$project)

DATA MANAGEMENT AND VISUALIZATION 80

Pipeline stages (2)

Stage Description

$facet Processes multiple aggregation pipelines within a single stage on the same set of
input documents. Enables the creation of multi-faceted aggregations capable of
characterizing data across multiple dimensions. Input documents are passed to the
$facet stage only once, without needing multiple retrieval.

$geoNear Returns an ordered stream of documents based on the proximity to a geospatial
point. The output documents include an additional distance field. It must in the first
stage only.

$graphLookup Performs a recursive search on a collection. To each output document, adds a new
array field that contains the traversal results of the recursive search for that
document.

DATA MANAGEMENT AND VISUALIZATION 81

Example

•The $graphLookup operation recursively matches on the
reportsTo and name fields in the employees collection, returning
the reporting hierarchy for each person.

•Returns a list of documents such as

{

"_id" : 5,

"name" : "Asya",

"reportsTo" : "Ron",

"reportingHierarchy" : [

{ "_id" : 1, "name" : "Dev" },

{ "_id" : 2, "name" : "Eliot", "reportsTo" : "Dev" },

{ "_id" : 3, "name" : "Ron", "reportsTo" : "Eliot" }

]

}

db.employees.aggregate([

{

$graphLookup: {

from: "employees",

startWith: "$reportsTo",

connectFromField: "reportsTo",

connectToField: "name",

as: "reportingHierarchy"

}

}

])

original

document

DATA MANAGEMENT AND VISUALIZATION 82

Pipeline stages (3)

Stage Description

$group Groups input documents by a specified identifier expression and applies the
accumulator expression(s), if specified, to each group. Consumes all input documents
and outputs one document per each distinct group. The output documents only
contain the identifier field and, if specified, accumulated fields.

$indexStats Returns statistics regarding the use of each index for the collection.

$limit Passes the first n documents unmodified to the pipeline where n is the specified limit.
For each input document, outputs either one document (for the first n documents) or
zero documents (after the first n documents).

$lookup Performs a join to another collection in the same database to filter in documents from
the “joined” collection for processing. To each input document, the $lookup stage
adds a new array field whose elements are the matching documents from the “joined”
collection. The $lookup stage passes these reshaped documents to the next stage.

DATA MANAGEMENT AND VISUALIZATION 83

Pipeline stages (4)

Stage Description

$match Filters the document stream to allow only matching documents to pass
unmodified into the next pipeline stage. $match uses standard MongoDB queries.
For each input document, outputs either one document (a match) or zero
documents (no match).

$merge Writes the resulting documents of the aggregation pipeline to a collection. The
stage can incorporate (insert new documents, merge documents, replace
documents, keep existing documents, fail the operation, process documents with
a custom update pipeline) the results into an output collection. To use
the $merge stage, it must be the last stage in the pipeline.

$out Writes the resulting documents of the aggregation pipeline to a collection. To use
the $out stage, it must be the last stage in the pipeline.

$project Reshapes each document in the stream, such as by adding new fields or removing
existing fields. For each input document, outputs one document.

DATA MANAGEMENT AND VISUALIZATION 84

Pipeline stages (5)

Stage Description

$sample Randomly selects the specified number of documents from its input.

$set Adds new fields to documents. Similar to $project, $set reshapes each document in
the stream; specifically, by adding new fields to output documents that contain both
the existing fields from the input documents and the newly added fields. $set is an
alias for $addFields stage. If the name of the new field is the same as an existing field
name (including _id), $set overwrites the existing value of that field with the value of
the specified expression.

$skip Skips the first n documents where n is the specified skip number and passes the
remaining documents unmodified to the pipeline. For each input document, outputs
either zero documents (for the first n documents) or one document (if after the
first n documents).

$sort Reorders the document stream by a specified sort key. Only the order changes; the
documents remain unmodified. For each input document, outputs one document.

DATA MANAGEMENT AND VISUALIZATION 85

Pipeline stages (6)

Stage Description

$sortByCount Groups incoming documents based on the value of a specified expression, then computes the
count of documents in each distinct group.

$unset Removes/excludes fields from documents.

$unwind Deconstructs an array field from the input documents to output a document for each element.
Each output document replaces the array with an element value. For each input document,
outputs n documents where n is the number of array elements and can be zero for an empty
array.

DATA MANAGEMENT AND VISUALIZATION 86

Data aggregation examples

MongoDB

Data Model

•Given the following collection of books

DATA MANAGEMENT AND VISUALIZATION 88

{
"title":"MongoDb Guide2",
"tag":["mongodb","guide","database"],
"n":200,
"review_score": 2.2,
"price":[{"v": 22.22, "c": "€", "country": "IT"},

{"v": 22.00, "c": "£", "country": "UK"}
],

"author": {
"_id": 1,
"name":"Mario",
"surname": "Rossi"}

}
{_id:ObjectId("5fb29b175b99900c3fa24293",
title:”Developing with Python",
tag:[”python”,”guide”,“programming”],
n:352,
review_score:4.6,
price:[{v: 24.99, c: “€”, country: “IT”},

{v: 19.49, c: “£”, country:”UK”}],
author: {_id: 2,

name:”John”,
surname: “Black”}

}, …

price currency

price value

number of pages

Example 1

•For each country, select the average price and the average review_score.

•The review score should be rounded down.

•Show the first 20 results with a total number of books higher than 50.

DATA MANAGEMENT AND VISUALIZATION 89

$unwind

DATA MANAGEMENT AND VISUALIZATION 90

db.book.aggregate([

{ $unwind: ”$price” } ,

])

Build a document

for each entry of

the price array

Result -$unwind

{ "_id" : ObjectId("5fb29ae15b99900c3fa24292"), "title" : "MongoDb guide", "tag" : ["mongodb", "guide",
"database"], "n" : 100, "review_score" : 4.3, "price" : { "v" : 19.99, "c" : " € ", "country" : "IT" }, "author" : { "_id" : 1,
"name" : "Mario", "surname" : "Rossi" } }

{ "_id" : ObjectId("5fb29ae15b99900c3fa24292"), "title" : "MongoDb guide", "tag" : ["mongodb", "guide",
"database"], "n" : 100, "review_score" : 4.3, "price" : { "v" : 18, "c" : "£", "country" : "UK" }, "author" : { "_id" : 1,
"name" : "Mario", "surname" : "Rossi" } }

{ "_id" : ObjectId("5fb29b175b99900c3fa24293"), "title" : " Developing with Python ", "tag" : ["python", "guide",
"programming"], "n" : 352, "review_score" : 4.6, "price" : { "v" : 24.99, "c" : " € ", "country" : "IT" }, "author" : {
"_id" : 2, "name" : "John", "surname" : "Black" } }

{ "_id" : ObjectId("5fb29b175b99900c3fa24293"), "title" : " Developing with Python ", "tag" : ["python", "guide",
"programming"], "n" : 352, "review_score" : 4.6, "price" : { "v" : 19.49, "c" : "£", "country" : "UK" }, "author" : {
"_id" : 2, "name" : "John", "surname" : "Black" } }

…

DATA MANAGEMENT AND VISUALIZATION 91

$group

db.book.aggregate([

{ $unwind: ”$price” } ,

{ $group: { _id: ”$price.country”},

avg_price: { $avg: ” $price.v” ,

bookcount: {$sum:1},

review: {$avg: ” $review_score”}

}

}

])

dot notation to access the

value of the embedded

document fields

count the number

of books (number

of documents)

DATA MANAGEMENT AND VISUALIZATION 92

Result -$group

{ "_id" : "UK", "avg_price" : 18.75, "bookcount": 150, "review": 4.3}

{ "_id" : "IT", "avg_price" : 22.49, "bookcount": 132, "review": 3.9}

{ "_id" : "US", "avg_price" : 22.49, "bookcount": 49, "review": 4.2}

…

DATA MANAGEMENT AND VISUALIZATION 93

$match

db.book.aggregate([

{ $unwind: '$price' } ,

{ $group: { _id: '$price.country',

avg_price: { $avg: '$price.v' },

bookcount: {$sum:1},

review: {$avg: '$review_score'}

}

},

{$match: { bookcount: { $gte: 50 } } },

])

Filter the documents

where bookcount is

greater than 50

DATA MANAGEMENT AND VISUALIZATION 94

Result -$match

{ "_id" : "UK", "avg_price" : 18.75, "bookcount": 150, "review": 4.3}

{ "_id" : "IT", "avg_price" : 22.49, "bookcount": 132, "review": 3.9}

…

DATA MANAGEMENT AND VISUALIZATION 95

$project

db.book.aggregate([

{ $unwind: '$price' } ,

{ $group: { _id: '$price.country',

avg_price: { $avg: '$price.v' },

bookcount: {$sum:1},

review: {$avg: '$review_score'}

}

},

{$match: { bookcount: { $gte: 50 } } },

{$project: {avg_price: 1, review: { $floor: '$review' }}},

])

round down the

review score

DATA MANAGEMENT AND VISUALIZATION 96

Result -$project

{ "_id" : "UK", "avg_price" : 18.75, "review": 4}

{ "_id" : "IT", "avg_price" : 22.49, "review" : 3}

…

DATA MANAGEMENT AND VISUALIZATION 97

$limit

db.book.aggregate([

{ $unwind: '$price' } ,

{ $group: { _id: '$price.country',

avg_price: { $avg: '$price.v' },

bookcount: {$sum:1},

review: {$avg: '$review_score'}

}

},

{$match: { bookcount: { $gte: 50 } } },

{$project: {avg_price: 1, review: { $floor: '$review' }}},

{$limit:20}

])

Limit the results

to the first 20

documents

DATA MANAGEMENT AND VISUALIZATION 98

Example 2

•Compute the 95 percentile of the number of pages,

•only for the books that contain the tag “guide”.

DATA MANAGEMENT AND VISUALIZATION 99

$match

db.book.aggregate([

{$match: { tag : "guide"} }

])

select documents containing

“guide” in the tag array,

compare with tag:[“guide”]

DATA MANAGEMENT AND VISUALIZATION 100

Result -$match

{ "_id" : ObjectId("5fb29b175b99900c3fa24293"), "title" : " Developing with Python", "tag" : ["python",
"guide", "programming"], "n" : 352, "review_score" : 4.6, "price" : [{ "v" : 24.99, "c" : "€", "country" : "IT" },
{ "v" : 19.49, "c" : "£", "country" : "UK" }], "author" : { "_id" : 1, "name" : "John", "surname" : "Black" } }

{ "_id" : ObjectId("5fb29ae15b99900c3fa24292"), "title" : "MongoDb guide", "tag" : ["mongodb", "guide",
"database"], "n" : 100, "review_score" : 4.3, "price" : [{ "v" : 19.99, "c" : "€", "country" : "IT" }, { "v" : 18, "c" :
"£", "country" : "UK" }], "author" : { "_id" : 1, "name" : "Mario", "surname" : "Rossi" } }

…

DATA MANAGEMENT AND VISUALIZATION 101

$sort

db.book.aggregate([

{$match: { tag : "guide"} },

{$sort : { n: 1} }

])

sort the documents in ascending order

according to the value of the n field, which

stores the number of pages of each book

DATA MANAGEMENT AND VISUALIZATION 102

Result -$sort

{ "_id" : ObjectId("5fb29ae15b99900c3fa24292"), "title" : "MongoDb guide", "tag" : ["mongodb", "guide",
"database"], "n" : 100, "review_score" : 4.3, "price" : [{ "v" : 19.99, "c" : "€", "country" : "IT" }, { "v" : 18, "c" :
"£", "country" : "UK" }], "author" : { "_id" : 1, "name" : "Mario", "surname" : "Rossi" } }

{ "_id" : ObjectId("5fb29b175b99900c3fa24293"), "title" : " Developing with Python", "tag" : ["python",
"guide", "programming"], "n" : 352, "review_score" : 4.6, "price" : [{ "v" : 24.99, "c" : "€", "country" : "IT" },
{ "v" : 19.49, "c" : "£", "country" : "UK" }], "author" : { "_id" : 1, "name" : "John", "surname" : "Black" } }

…

DATA MANAGEMENT AND VISUALIZATION 103

$group + $push

db.book.aggregate([

{$match: { tag : "guide"} },

{$sort : { n: 1} },

{$group: {_id:null, value: {$push: "$n"}}}

])

group all the records

together inside a single

document (_id:null),

which contains an array

with all the values of n

of all the records

DATA MANAGEMENT AND VISUALIZATION 104

Result -$group + $push

{ "_id": null, "value": [100, 352, …]}

DATA MANAGEMENT AND VISUALIZATION 105

$project + $arrayElemAt

db.book.aggregate([

{$match: { tag : "guide"} },

{$sort : { n: 1} },

{$group: {_id:null, value: {$push: "$n"}}},

{$project:

{"n95p": {$arrayElemAt:

["$value",

{$floor: {$multiply: [0.95, {$size: "$value"}]}}

]

} }

}

])

compute the index at 95% of the array length

get the value of the array at a given index

with { $arrayElemAt: [<array>, <idx>] }

DATA MANAGEMENT AND VISUALIZATION 106

Result -$project + $arrayElemAt

{ "_id" : null, "n95p" : 420 }

DATA MANAGEMENT AND VISUALIZATION 107

Example 3

•Compute the median of the review_score,

•only for the books having at least a price whose value is higher than 20.0.

DATA MANAGEMENT AND VISUALIZATION 108

Solution

db.book.aggregate([

{$match: {'price.v' : { $gt: 20 }} },

{$sort : {review_score: 1} },

{$group: {_id:null, rsList: {$push: '$review_score'}}},

{$project:

{'median': {$arrayElemAt:

['$rsList',

{$floor: {$multiply: [0.5, {$size: '$rsList'}]}}

]

} }

}

])

DATA MANAGEMENT AND VISUALIZATION 109

Indexing

MongoDB

Indexes

DATA MANAGEMENT AND VISUALIZATION 111

•Without indexes, MongoDB must perform a collection scan, i.e. scan
every document in a collection, to select those documents that match the
query statement.

•Indexes are data structures that store a small portion of the collection’s
data set in a form easy to traverse.

•They store ordered values of a specific field, or set of fields, in order to
efficiently support

oequality matches,

orange-based queries and

osorting operations.

Indexes

DATA MANAGEMENT AND VISUALIZATION 112

Indexes

DATA MANAGEMENT AND VISUALIZATION 113

•MongoDB creates a unique index on the _id field during the creation of a
collection.

•The _id index prevents clients from inserting two documents with the
same value for the _id field.

•You cannot drop this index on the _id field.

Create new indexes

DATA MANAGEMENT AND VISUALIZATION 114

•Creating an index

db.collection.createIndex(<index keys>, <options>)

oBefore v. 3.0 use db.collection.ensureIndex()

•Options include:

oname - a mnemonic name given by the user, you cannot rename an index once
created, instead, you must drop and re-create the index with a new name

ounique - whether to accept or not insertion of documents with duplicate keys,

obackground, dropDups, …

Indexes

DATA MANAGEMENT AND VISUALIZATION 115

•MongoDB provides different data-type indexes

oSingle field indexes

oCompound field indexes

oMultikey indexes (to index the content stored in arrays, MongoDB creates separate
index entries for every element of the array)

oGeospatial indexes (2d indexes with planar and 2dsphere with spherical geometry)

oText indexes (searching for string content in a collection, they do not store
language-specific stop words, e.g., "the", "a", "or“, and stem the words in a collection
to only store root words

oHashed indexes (indexes the hash of the value of a field, they have a more random
distribution of values along their range, but only support equality matches and
cannot support range-based queries)

Indexes

DATA MANAGEMENT AND VISUALIZATION 116

•Single field indexes

oSupport user-defined ascending/descending indexes on a single field of a document

•E.g.,

o db.orders.createIndex({orderDate: 1})

•Compound field indexes

oSupport user-defined indexes on a set of fields

•E.g.,

o db.orders.createIndex({orderDate: 1, zipcode: -1})

Indexes

DATA MANAGEMENT AND VISUALIZATION 117

•MongoDB supports efficient queries of geospatial data

•Geospatial data are stored as:
o GeoJSON objects: embedded document { <type>, <coordinate> }

▪ E.g., location: {type: "Point", coordinates: [-73.856, 40.848]}

o Legacy coordinate pairs: array or embedded document

▪ point: [-73.856, 40.848]

•Fields with 2dsphere indexes must hold geometry data in the form of
coordinate pairs or GeoJSON data.
o If you attempt to insert a document with non-geometry data in a 2dsphere indexed field, or build a 2dsphere

index on a collection where the indexed field has non-geometry data, the operation will fail.

Indexes

DATA MANAGEMENT AND VISUALIZATION 118

•Geospatial indexes

oTwo type of geospatial indexes are provided: 2d and 2dsphere

•A 2dsphere index supports queries that calculate geometries on an
earth-like sphere

•Use a 2d index for data stored as points on a two-dimensional plane.

•E.g.,
o db.places.createIndex({location: “2dsphere”})

•Geospatial query operators

o$geoIntersects, $geoWithin, $near, $nearSphere

Indexes

DATA MANAGEMENT AND VISUALIZATION 119

•$near syntax:

{

<location field>: {

$near: {

$geometry: {

type: "Point" ,

coordinates: [<longitude> , <latitude>]

},

$maxDistance: <distance in meters>,

$minDistance: <distance in meters>

}

}

}

Indexes

DATA MANAGEMENT AND VISUALIZATION 120

•E.g.,
o db.places.createIndex({location: “2dsphere”})

•Geospatial query operators

o$geoIntersects, $geoWithin, $near, $nearSphere

•Geopatial aggregation stage

o$near

Indexes

DATA MANAGEMENT AND VISUALIZATION 121

•E.g.,

o db.places.find({location:

{$near:

{$geometry: {

type: "Point",

coordinates: [-73.96, 40.78] },

$maxDistance: 5000}

}})

o Find all the places within 5000 meters from the specified GeoJSON point, sorted in order from nearest
to furthest

Indexes

DATA MANAGEMENT AND VISUALIZATION 122

•Text indexes

oSupport efficient searching for string content in a collection

oText indexes store only root words (no language-specific stop words or stem)

•E.g.,

db.reviews.createIndex({comment: “text”})

oWildcard ($**) allows MongoDB to index every field that contains string data

oE.g.,

db.reviews.createIndex({“$**”: “text”})

VIEWS
•A queryable object whose contents are defined by an aggregation pipeline on other collections or views.

•MongoDB does not persist the view contents to disk. A view’s content is computed on-demand.

•Starting in version 4.2, MongoDB adds the $merge stage for the aggregation pipeline to create on-demand
materialized views, where the content of the output collection can be updated each time the pipeline is run.

•Read-only views from existing collections or other views. E.g.:

o excludes private or confidential data from a collection of employee data

o adds computed fields from a collection of metrics

o joins data from two different related collections

•Restrictions

o immutable Name

o you can modify a view either by dropping and recreating the view or using the collMod comman

db.runCommand({
create: <view>, viewOn: <source>, pipeline: <pipeline>, collation: <collation> })

123DATA MANAGEMENT AND VISUALIZATION 123

GUI for MongoDB

MongoDB Compass

MongoDB Compass

DATA MANAGEMENT AND VISUALIZATION 125

•Visually explore data.

•Available on Linux, Mac, or Windows.

•MongoDB Compass analyzes documents and displays rich
structures within collections.

•Visualize, understand, and work with your geospatial data.

DATA MANAGEMENT AND VISUALIZATION 126

MongoDB Compass

•Connect to local or remote instances of MongoDB.

MongoDB Compass

•Get an overview of the data in list or table format.

DATA MANAGEMENT AND VISUALIZATION 127

MongoDB Compass

•Analyze the documents and their fields.

•Native support for geospatial coordinates.

DATA MANAGEMENT AND VISUALIZATION 128

MongoDB Compass

•Visually build the query conditioning on analyzed fields.

DATA MANAGEMENT AND VISUALIZATION 129

MongoDB Compass

•Autcomplete enabled by default

•Construct the query step by step.

DATA MANAGEMENT AND VISUALIZATION 130

MongoDB Compass

•Analyze query performance and get hints to speed it up.

DATA MANAGEMENT AND VISUALIZATION 131

MongoDB Compass

•Specify contraints to validate data

•Find unconsistent documents.

DATA MANAGEMENT AND VISUALIZATION 132

MongoDB Compass: Aggregation

•Build a pipeline consisting of
multiple aggregation stages

DATA MANAGEMENT AND VISUALIZATION 133

•Define the filter and aggregation
attributes for each operator.

DATA MANAGEMENT AND VISUALIZATION 134

MongoDB Compass: Aggregation stages

DATA MANAGEMENT AND VISUALIZATION 135

MongoDB Compass: Aggregation stages

The _id corresponds to the
GROUP BY parameter in SQL

Other fields contain the
attributes required for each
group.

One group for each “vendor”.

DATA MANAGEMENT AND VISUALIZATION 136

MongoDB Compass: Pipelines

1st stage: grouping by vendor

2nd stage: condition over fields created in the previous
stage (avg_fuel, total).

