
RDDs, Datasets and DataFrames 

1 



 Log filtering 

 Input: a simplified log of a web server (i.e., a 
textual file) 

▪ Each line of the file is associated with a URL request 

 Output: the lines containing the word “google” 

▪ Store the output in an HDFS folder  

2 



 Input file 

 

 

 

 
 

 Output 

3 

66.249.69.97 - - [24/Sep/2014:22:25:44 +0000] "GET http://www.google.com/bot.html” 
66.249.69.97 - - [24/Sep/2014:22:26:44 +0000] "GET http://www.google.com/how.html” 
66.249.69.97 - - [24/Sep/2014:22:28:44 +0000] "GET http://dbdmg.polito.it/course.html” 
71.19.157.179 - - [24/Sep/2014:22:30:12 +0000] "GET http://www.google.com/faq.html” 
66.249.69.97 - - [24/Sep/2014:31:28:44 +0000] "GET http://dbdmg.polito.it/thesis.html” 
 

66.249.69.97 - - [24/Sep/2014:22:25:44 +0000] "GET http://www.google.com/bot.html” 
66.249.69.97 - - [24/Sep/2014:22:26:44 +0000] "GET http://www.google.com/how.html” 
71.19.157.179 - - [24/Sep/2014:22:30:12 +0000] "GET http://www.google.com/faq.html” 
 



 Log analysis 

 Input: log of a web server (i.e., a textual file) 

▪ Each line of the file is associated with a URL request 

 Output: the list of distinct IP addresses associated 
with the connections to a google page (i.e., 
connections to URLs containing the term 
“www.google.com”) 

▪ Store the output in an HDFS folder  

4 



 Input file 

 

 

 

 
 

 Output 

5 

66.249.69.97 - - [24/Sep/2014:22:25:44 +0000] "GET http://www.google.com/bot.html” 
66.249.69.97 - - [24/Sep/2014:22:26:44 +0000] "GET http://www.google.com/how.html” 
66.249.69.97 - - [24/Sep/2014:22:28:44 +0000] "GET http://dbdmg.polito.it/course.html” 
71.19.157.179 - - [24/Sep/2014:22:30:12 +0000] "GET http://www.google.com/faq.html” 
66.249.69.95 - - [24/Sep/2014:31:28:44 +0000] "GET http://dbdmg.polito.it/thesis.html” 
66.249.69.97 - - [24/Sep/2014:56:26:44 +0000] "GET http://www.google.com/how.html” 
56.249.69.97 - - [24/Sep/2014:56:26:44 +0000] "GET http://www.google.com/how.html” 
 
 

66.249.69.97  
71.19.157.179 
56.249.69.97 



 Maximum value 

 Input: a collection of (structured) textual csv files 
containing the daily value of PM10 for a set of 
sensors 

▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: report the maximum value of PM10 

▪ Print the result on the standard output 

 

6 



 Input file 

 

 

 

 

 

 Output 

7 

s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 

60.2 



 Top-k maximum values 

 Input: a collection of (structured) textual csv files 
containing the daily value of PM10 for a set of 
sensors 

▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: report the top-3 maximum values of 
PM10 

▪ Print the result on the standard output 

 
8 



 Input file 

 

 

 

 

 

 Output  

9 

s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 

60.2 
55.5 
52.5 



 Readings associated with the maximum value 

 Input: a collection of (structured) textual csv files 
containing the daily value of PM10 for a set of 
sensors 

▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: the line(s) associated with the maximum 
value of PM10 

▪ Store the result in an HDFS folder 

10 



 Input file 

 

 

 

 

 

 Output 

11 

s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,60.2 
s2,2016-01-03,52.5 
 
 

s1,2016-01-02,60.2 
s1,2016-01-03,60.2 



 Dates associated with the maximum value 

 Input: a collection of (structured) textual csv files 
containing the daily value of PM10 for a set of 
sensors 

▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: the date(s) associated with the maximum 
value of PM10 

▪ Store the result in an HDFS folder 

 
12 



 Input file 

 

 

 

 

 

 Output 

13 

s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,60.2 
s2,2016-01-03,52.5 
 
 

2016-01-02 
2016-01-03 



 Average value 

 Input: a collection of (structured) textual csv files 
containing the daily value of PM10 for a set of 
sensors 

▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: compute the average PM10 value 

▪ Print the result on the standard output 

 

14 



 Input file 

 

 

 

 

 

 Output 

15 

s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 

39.86 



 Maximum values 

 Input: a textual csv file containing the daily value 
of PM10 for a set of sensors 

▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: the maximum value of PM10 for each 
sensor 

▪ Store the result in an HDFS file 

 

16 



 Input file 

 

 

 

 

 

 Output 

17 

s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 

(s1,60.2) 
(s2,52.5) 



 Pollution analysis 

 Input: a textual csv file containing the daily value 
of PM10 for a set of sensors 

▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: the sensors with at least 2 readings with a 
PM10 value greater than the critical threshold 50 

▪ Store in an HDFS file the sensorIds of the selected 
sensors and also the number of times each of those 
sensors is associated with a PM10 value greater than 50 

 18 



 Input file 

 

 

 

 

 

 Output 

19 

s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 

(s1,2) 



 Critical dates analysis 
 Input: a textual csv file containing the daily value of 

PM10 for a set of sensors 
▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: an HDFS file containing one line for each 
sensor 
▪ Each line contains a sensorId and the list of dates with a PM10 

value greater than 50 for that sensor 

 Consider only the sensors associated at least one 
time with a PM10 value greater than 50 

 

20 



 Input file 

 

 

 

 

 

 Output 

21 

s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 

(s1, [2016-01-02, 2016-01-03]) 
(s2, [2016-01-03]) 



 Critical dates analysis 
 Input: a textual csv file containing the daily value of 

PM10 for a set of sensors 
▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: an HDFS file containing one line for each 
sensor 
▪ Each line contains a sensorId and the list of dates with a PM10 

value greater than 50 for that sensor 

▪ Also the sensors which have never been associated with a 
PM10 values greater than 50 must be included in the result 
(with an empty set) 

22 



 Input file 

 

 

 

 

 

 Output 

23 

s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
s3,2016-01-03,12.5 
 
 
 

(s1, [2016-01-02, 2016-01-03]) 
(s2, [2016-01-03]) 
(s3, []) 



 Order sensors by number of critical days 
 Input: a textual csv file containing the daily value of 

PM10 for a set of sensors 
▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

 Output: an HDFS file containing the sensors ordered 
by the number of critical days 
▪ Each line of the output file contains the number of days with 

a PM10 value greater than 50 for a sensor s and the sensorId 
of sensor s 

 Consider only the sensors associated at least one 
time with a PM10 value greater than 50 

 

24 



 Input file 

 

 

 

 

 

 Output 

25 

s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 

2, s1 
1, s2 



 Top-k most critical sensors 

 Input:  

▪ A textual csv file containing the daily value of PM10 for a 
set of sensors 
▪ Each line of the files has the following format 

sensorId,date,PM10 value (μg/m3 )\n 

▪ The value of k  
▪ It is an argument of the application 

26 



 Top-k most critical sensors 

 Output:  

▪ An HDFS file containing the top-k critical sensors 
▪ The “criticality” of a sensor is given by the number of days with a 

PM10 value greater than 50 

▪ Each line contains the number of critical days and the sensorId 

 Consider only the sensors associated at least 
one time with a PM10 value greater than 50 

 

27 



 Input file 

 

 

 

 

 k = 1 

 Output 

28 

s1,2016-01-01,20.5 
s2,2016-01-01,30.1 
s1,2016-01-02,60.2 
s2,2016-01-02,20.4 
s1,2016-01-03,55.5 
s2,2016-01-03,52.5 
 
 

2, s1 



 Mapping Question-Answer(s) 

 Input:  

▪ A large textual file containing a set of questions 
▪ Each line contains one question 

▪ Each line has the format  

 QuestionId,Timestamp,TextOfTheQuestion 

▪ A large textual file containing a set of answers 
▪ Each line contains one answer 

▪ Each line has the format  

 AnswerId,QuestionId,Timestamp,TextOfTheAnswer 

29 



 Output: 

▪ A file containing one line for each question 

▪ Each line contains a question and the list of answers to 
that question 
▪ QuestionId, TextOfTheQuestion, list of Answers 

30 



 Questions 
 
 
 

 Answers 
 

Q1,2015-01-01,What is ..? 
Q2,2015-01-03,Who invented .. 
 
 
 
 
 
 
A1,Q1,2015-01-02,It is .. 
A2,Q2,2015-01-03,John Smith 
A3,Q1,2015-01-05,I think it is .. 
 
 



 Output 
 
 

 

(Q1,([What is ..?],[It is .., I think it is ..])) 
(Q2,([Who invented ..],[John Smith])) 
 
 
 
 

 
 



 Critical bike sharing station analysis 
 Input:  
 A textual csv file containing the occupancy of the 

stations of a bike sharing system 
▪ The sampling rate is 5 minutes 
▪ Each line of the file contains one sensor reading/sample has 

the following format 
stationId,date,hour,minute,num_of_bikes,num_of_free_slots 

▪ Some readings are missing due to temporarily malfunctions 
of the stations 
▪ Hence, the number of samplings is not exactly the same for all 

stations 

 The number of distinct stations is 100 

33 



 Input:  

 A second textual csv file containing the list of 
neighbors of each station 

▪ Each line of the file has the following format 

 stationIdx, list of neighbors of stationIdx 

▪ E.g., 

 s1,s2 s3 

 means that s2 and s3 are neighbors of s1  

 

34 



 Outputs: 

 Compute the percentage of critical situations for 
each station 

▪ A station is in a critical situation if the number of free 
slots is below a user provided threshold (e.g., 3 slots) 

▪ The percentage of critical situations for a station Si is 
defined as (number of critical readings associated with 
Si)/(total number of readings associated with Si)  

  

35 



 Store in an HDFS file the stations with a 
percentage of critical situations higher than 80% 
(i.e., stations that are almost always in a critical 
situation and need to be extended) 

▪ Each line of the output file is associated with one of the 
selected stations and contains the percentage of critical 
situations and the stationId 

▪ Sort the stored stations by percentage of critical 
situations 

36 



 Compute the percentage of critical situations for 
each pair (timeslot, station) 

▪ Timeslot can assume the following 6 values 
▪ [0-3] 

▪ [4-7] 

▪ [8-11] 

▪ [12-15] 

▪ [16-19] 

▪ [20-23] 

37 



 Store in an HDFS file the pairs (timeslot, station) 
with a percentage of critical situations higher than 
80% (i.e., stations that need rebalancing 
operations in specific timeslots) 

▪ Each line of the output file is associated with one of the 
selected pairs (timeslot, station) and contains the 
percentage of critical situations and the pair (timeslot, 
stationId) 

▪ Sort the result by percentage of critical situations 

38 



 Select a reading (i.e., a line) of the first input file if 
and only if the following constraints are true 
▪ The line is associated with a full station situation 

▪ i.e., the station Si associated with the current line has a number of 
free slots equal to 0 

▪ All the neighbor stations of the station Si are full in the 
time stamp associated with the current line 
▪ i.e., bikers cannot leave the bike at Station Si and also all the 

neighbor stations are full in the same time stamp  

 Store the selected readings/lines in an HDFS file 
and print on the standard output the total number 
of such lines 

39 



 Misleading profile selection 
 Input:  

 A textual file containing the list of movies 
watched by the users of a video on demand 
service 

▪ Each line of the file contains the information about one 
visualization 
userid,movieid,start-timestamp,end-timestamp 

▪ The user with id userid watched the movie with id 
movieid from start-timestamp to end-timestamp 

40 



 Input:  

 A second textual file containing the list of 
preferences for each user 

▪ Each line of the file contains the information about one 
preference 
userid,movie-genre 

▪ The user with id userid liked the movie of type movie-
genre 
 

41 



 Input:  

 A third textual file containing the list of movies 
with the associated information 

▪ Each line of the file contains the information about one 
movie 
movieid,title,movie-genre 

▪ There is only one line for each movie 
▪ i.e., each movie has one single genre 

42 



 Output: 

 Select the userids of the list of users with a 
misleading profile 

▪ A user has a misleading profile if more than threshold% 
of the movies he/she watched are not associated with a 
movie genre he/she likes 

▪ threshold is an argument/parameter of the application 
and it is specified by the user 

 Store the result in an HDFS file 

43 



 Profile update 
 Input:  

 A textual file containing the list of movies 
watched by the users of a video on demand 
service 

▪ Each line of the file contains the information about one 
visualization 
userid,movieid,start-timestamp,end-timestamp 

▪ The user with id userid watched the movie with id 
movieid from start-timestamp to end-timestamp 

44 



 Input:  

 A second textual file containing the list of 
preferences for each user 

▪ Each line of the file contains the information about one 
preference 
userid,movie-genre 

▪ The user with id userid liked the movie of type movie-
genre 
 

45 



 Input:  

 A third textual file containing the list of movies 
with the associated information 

▪ Each line of the file contains the information about one 
movie 
movieid,title,movie-genre 

▪ There is only one line for each movie 
▪ i.e., each movie has one single genre 

46 



 Output: 
 Select for each user with a misleading profile 

(according to the same definition of Exercise #44) the 
list of movie genres that are not in his/her preferred 
genres and are associated with at least 5 movies 
watched by the user 

 Store the result in an HDFS file 
▪ Each line of the output file is associated with one pair (user, 

selected misleading genre) associated with him/her 
▪ The format is  

 userid, selected (misleading) genre 

▪ Users associated with a list of selected genres are associated 
with multiple lines of the output file 

47 



 Time series analysis 
 Input:  
 A textual file containing a set of temperature readings 
 Each line of the file contains one timestamp and the 

associated temperature reading 
timestamp, temperature 
▪ The format of the timestamp is the Unix timestamp that is 

defined as the number of seconds that have elapsed since 
00:00:00 Coordinated Universal Time (UTC), Thursday, 1 
January 1970 

 The sample rate is 1 minute 
▪ i.e., the difference between the timestamps of two 

consecutive readings is 60 seconds 
 

48 



 Output: 

 Consider all the windows containing 3 consecutive 
temperature readings and  

▪ Select the windows characterized by an increasing trend 
▪ A window is characterized by an increasing trend if for all the 

temperature readings in it 
temperature(t)>temperature(t-60 seconds)  

▪ Store the result into an HDFS file 

49 



 Input file 
 
 
 
 
 

 Output file 
 
 
 
 

50 

1451606400,12.1 
1451606460,12.2 
1451606520,13.5 
1451606580,14.0 
1451606640,14.0 
1451606700,15.5 
1451606760,15.0 
 

1451606400,12.1,1451606460,12.2,1451606520,13.5 
1451606460,12.2,1451606520,13.5,1451606580,14.0 



 Input:  
 A CSV file containing a list of user profiles 

▪ Header 
▪ name,age,gender 

▪ Each line of the file contains the information about one user 

 Output: 
 Select male users (gender=“male”), increase by one 

their age, and store in the output folder name and age 
of these users sorted by decreasing age and 
ascending name (if the age value is the same) 

 The output does not contain the header line 

 
51 



 Example of input data:  
name,age,gender 

Paul,40,male 

John,40,male 

David,15,male 

Susan,40,female 

Karen,34,female 

 Example of expected output: 
John,41 

Paul,41 

David,16 

52 



 Implement two different solutions for this 
exercise 

 A solution based only on DataFrames 

 A solution based on SQL like queries executed on 
a temporary table associated with the input data 

53 



 Input:  

 A CSV file containing a list of user profiles 

▪ Header 

▪ name,age,gender 

▪ Each line of the file contains the information about one user 

 Output: 

 Select the names occurring at least two times and 
store in the output folder name and average(age) of 
the selected names 

 The output does not contain the header line 

 
54 



 Example of input data:  
name,age,gender 

Paul,40,male 

Paul,38,male 

David,15,male 

Susan,40,female 

Susan,34,female 

 Example of expected output: 
Paul,39 

Susan,37 

55 



 Implement two different solutions for this 
exercise 

 A solution based only on DataFrames 

 A solution based on SQL like queries executed on 
a temporary table associated with the input data 

56 



 Input:  
 A csv file containing a list of profiles 

▪ Header: name,surname,age 

▪ Each line of the file contains one profile 

▪ name,surname,age 

 Output: 
 A csv file containing one line for each profile. The 

original age attribute is substituted with a new 
attributed called rangeage of type String 
▪ rangeage = "[" + (age/10)*10 + "-" + (age/10)*10 +9"]" 

57 



 Input: 
name,surname,age 

Paolo,Garza,42 

Luca,Boccia,41 

Maura,Bianchi,16 

 Expected output: 
name,surname,rangeage 

Paolo,Garza,[40-49] 

Luca,Boccia,[40-49] 

Maura,Bianchi,[10-19] 

 58 



 Input:  

 A csv file containing a list of profiles 

▪ Header: name,surname,age 

▪ Each line of the file contains one profile 

▪ name,surname,age 

 Output: 

 A csv file containing one single column called 
“name_surname” of type String 

▪ name_surname  = name+" "+surname 

59 



 Input: 
name,surname,age 

Paolo,Garza,42 

Luca,Boccia,41 

Maura,Bianchi,16 

 Expected output: 
name_surname 

Paolo Garza 

Luca Boccia 

Maura Bianchi 

 60 


