

 Apache Spark™ is a fast and general-purpose
engine for large-scale data processing

 Spark aims at achieving the following goals in
the Big data context

 Generality: diverse workloads, operators, job sizes

 Low latency: sub-second

 Fault tolerance: faults are the norm, not the
exception

 Simplicity: often comes from generality

 Originally developed at the University of
California - Berkeley's AMPLab

 Iterative jobs, with MapReduce, involve a lot
of disk I/O for each iteration and stage

Mappers Reducers Mappers Reducers

Stage 1 Stage 2

 Disk I/O is very slow (even if it is local I/O)

Mappers Reducers Mappers Reducers

Stage 1 Stage 2

 Motivation
 Using MapReduce for complex iterative jobs or

multiple jobs on the same data involves lots of
disk I/O

 Opportunity
 The cost of main memory decreased

▪ Hence, large main memories are available in each server

 Solution
 Keep more data in main memory

▪ Basic idea of Spark

 MapReduce: Iterative job

iteration 1 iteration 2 . . .

Input

HDFS
read

HDFS HDFS

write read

HDFS

write

 Spark: Iterative job

 Data are shared between the iterations by
using the main memory

 Or at least part of them

 10 to 100 times faster than disk

iteration 1 iteration 2 . . .

Input

HDFS

read

 MapReduce: Multiple analyses of the same
data

Input

query 1

query 2

result 1

result 2

result 3

. . .

HDFS

read

HDFS

read

HDFS

read

HDFS

read query 3

 Spark: Multiple analyses of the same data

 Data are read only once from HDFS and stored
in main memory
 Split of the data across the main memory of each

server

Input

query 1

query 2

query 3

result 1

result 2

result 3

HDFS

read

Distributed

memory
. . .

 Data are represented as Resilient Distributed
Datasets (RDDs)

 Partitioned/Distributed collections of objects
spread across the nodes of a cluster

 Stored in main memory (when it is possible) or on
local disk

 Spark programs are written in terms of
operations on resilient distributed data sets

 RDDs are built and manipulated through a set
of parallel

 Transformations

▪ map, filter, join, …

 Actions

▪ count, collect, save, …

 RDDs are automatically rebuilt on machine
failure

 Provides a programming abstraction (based
on RDDs) and transparent mechanisms to
execute code in parallel on RDDs

 Hides complexities of fault-tolerance and slow
machines

 Manages scheduling and synchronization of the
jobs

Hadoop
Map Reduce

Spark

Storage Disk only In-memory or on disk

Operations Map and
Reduce

Map, Reduce, Join,
Sample, etc…

Execution model Batch Batch, interactive,
streaming

Programming
environments

Java Scala, Java, Python, and R

 Lower overhead for starting jobs
 Less expensive shuffles

 Two iterative Machine Learning algorithms:

 K-means Clustering

 Logistic Regression

4.1

121

0 50 100

Hadoop MR

Spark

150 sec

0.96

80

0 20 40 60 80

Hadoop MR

Spark

100 sec

Daytona Gray

100 TB sort

benchmark

record (tied

for 1st place)

Spark SQL
structured

data

Spark
Streaming
real-time

MLlib
(Machine

learning and
Data

mining)

GraphX
(Graph

processing)

Spark Core

Standalone Spark
Scheduler

YARN Scheduler
(The same used by

Hadoop)
Mesos

 Spark is based on a basic component (the
Spark Core component) that is exploited by
all the high-level data analytics components

 This solution provides a more uniform and
efficient solution with respect to Hadoop where
many non-integrated tools are available

 When the efficiency of the core component is
increased also the efficiency of the other
high-level components increases

21

 Spark Core

 Contains the basic functionalities of Spark
exploited by all components

▪ Task scheduling

▪ Memory management

▪ Fault recovery

▪ …

 Provides the APIs that are used to create RDDs
and applies transformations and actions on them

22

 Spark SQL structured data
 This component is used to interact with

structured datasets by means of the SQL
language or specific querying APIs
▪ Based on Datasets

 It supports also
▪ Hive Query Language (HQL)

 It interacts with many data sources
▪ Hive Tables, Parquet, Json, ..

 It exploits a query optimizer engine

23

 Spark Streaming real-time

 It is used to process live streams of data in real-
time

 The APIs of the Streaming real-time components
operated on RDDs and are similar to the ones
used to process standard RDDs associated with
“static” data sources

24

 MLlib

 It is a machine learning/data mining library

 It can be used to apply the parallel versions of
some machine learning/data mining algorithms

▪ Data preprocessing and dimensional reduction

▪ Classification algorithms

▪ Clustering algorithms

▪ Itemset mining

▪ ….

 25

 GraphX

 A graph processing library

 Provides many algorithms for manipulating
graphs

▪ Subgraph searching

▪ PageRank

▪ ….

 GraphFrames

 A graph library based on DataFrames

26

 Spark can exploit many schedulers to execute
its applications

 Hadoop YARN

▪ Standard scheduler of Hadoop

 Mesos cluster

▪ Another popular scheduler

 Standalone Spark Scheduler

▪ A simple cluster scheduler included in Spark

27

 RDDs are the primary abstraction in Spark
 RDDs are distributed collections of objects

spread across the nodes of a clusters

 They are split in partitions

 Each node of the cluster that is running an
application contains at least one partition of the
RDD(s) that is (are) defined in the application

 RDDs

 Are stored in the main memory of the executors
running in the nodes of the cluster (when it is
possible) or in the local disk of the nodes if there is
not enough main memory

 Allow executing in parallel the code invoked on
them

▪ Each executor of a worker node runs the specified code
on its partition of the RDD

 Example of an RDD split in 3 partitions

Item 1

Item 2

Item 3

Item 4

Item 5

Item 6

Item 7

Item 8

Item 9

Item 10

Item 11

Item 12

Executor

Worker node

Item 1

Item 2

Item 3

Item 4

Executor

Worker node

Item 5

Item 6

Item 7

Item 8

Executor

Worker node

Item 9

Item 10

Item 11

Item 12

 Example of an RDD split in 3 partitions

Item 1

Item 2

Item 3

Item 4

Item 5

Item 6

Item 7

Item 8

Item 9

Item 10

Item 11

Item 12

Executor

Worker node

Item 1

Item 2

Item 3

Item 4

Executor

Worker node

Item 5

Item 6

Item 7

Item 8

Executor

Worker node

Item 9

Item 10

Item 11

Item 12

more partitions

=

more parallelism

 RDDs
 Are immutable once constructed

▪ i.e., the content of an RDD cannot be modified

 Spark tracks lineage information to efficiently
recompute lost data (due to failures of some
executors)

▪ i.e., for each RDD, Spark knows how it has been
constructed and can rebuilt it if a failure occurs

▪ This information is represented by means of a DAG
(Direct Acyclic Graph) connecting input data and RDDs

33

 RDDs can be created
 by parallelizing existing collections of the hosting

programming language (e.g., collections and lists of
Scala, Java, Pyhton, or R)
▪ In this case the number of partition is specified by the user

 from (large) files stored in HDFS
▪ In this case there is one partition per HDFS block

 from files stored in many traditional file systems or
databases

 by transforming an existing RDDs
▪ The number of partitions depends on the type of

transformation

34

 Spark programs are written in terms of
operations on resilient distributed data sets

 Transformations

▪ map, filter, join, …

 Actions

▪ count, collect, save, …

 Spark
 Manages scheduling and synchronization of the

jobs

 Manages the split of RDDs in partitions and
allocates RDDs’ partitions in the nodes of the
cluster

 Hides complexities of fault-tolerance and slow
machines
▪ RDDs are automatically rebuilt in case of machine

failures

 Spark supports many programming
languages

 Scala

▪ The same language that is used to develop the Spark
framework and all its components (Spark Core, Spark
SQL, Spark Streaming, MLlib, GraphX)

 Java

 Python

 R

38

 Spark supports many programming
languages

 Scala

▪ The same language that is used to develop the Spark
framework and all its components (Spark Core, Sparl
SQL, Spark Streaming, MLlib, GraphX)

 Java  We will use Java

 Python

 R

39

 The Driver program

 Contains the main method

 “Defines” the workflow of the application

 Accesses Spark through the SparkContext object

▪ The SparkContext object represents a connection to the
cluster

 Defines Resilient Distributed Datasets (RDDs) that
are “allocated” in the nodes of the cluster

 Invokes parallel operations on RDDs

40

 The Driver program defines
 Local variables

▪ The standard variables of the Java programs

 RDDs
▪ Distributed “variables” stored in the nodes of the cluster

 The SparkContext object allows
▪ Creating RDDs

▪ “Submitting” executors (processes) that execute in
parallel specific operations on RDDs
▪ Transformations and Actions

41

 The worker nodes of the cluster are used to
run your application by means of executors

 Each executor runs on its partition of the
RDD(s) the operations that are specified in
the driver

42

Executor

Task

Worker node

Cache

Task

Executor

Task

Worker node

Cache

Task

Executor

Task

Worker node

Cache

Task

43

Driver program

SparkContext

……..

HDFS, Amazon S3, or other file system

Executor

Task

Worker node

Cache

Task

Executor

Task

Worker node

Cache

Task

Executor

Task

Worker node

Cache

Task

44

Driver program

SparkContext

……..

HDFS, Amazon S3, or other file system

RDDs are distributed across

executors (each RDD is split

in partitions that are spread

across the available

executors)

 Spark programs can also be executed locally

 Local threads are used to parallelize the execution
of the application on RDDs on a single PC

▪ Local threads can be seen are “pseudo-worker” nodes

 It is useful to develop and test the applications
before deploying them on the cluster

 A local scheduler is launched to run Spark
programs locally

45

Executor

Task

Cache

Task

Executor

Task

Cache

Task

Executor

Task

Cache

Task

46

Driver program

SparkContext

……..

Local file system

Single PC

 Application

 User program built on Spark

 It consists of a driver program and executors on
the cluster

 Application jar

 A jar containing the user's Spark application

 Driver program

 The process running the main() function of the
application and creating the SparkContext

47
Based on http://spark.apache.org/docs/latest/cluster-overview.html

 Cluster manager
 An external service for acquiring resources on the

cluster (e.g. standalone manager, Mesos, YARN)
 Deploy mode
 Distinguishes where the driver process runs

▪ In "cluster" mode, the framework launches the driver inside of
the cluster

▪ In "client" mode, the submitter launches the driver outside of
the cluster

 Worker node
 Any node of the cluster that can run application code

in the cluster

48

 Executor
 A process launched for an application on a worker

node, that runs tasks and keeps data in memory or
disk storage across them

 Each application has its own executors
 Task
 A unit of work that will be sent to one executor

 Job
 A parallel computation consisting of multiple tasks

that gets spawned in response to a Spark action (e.g.
save, collect)

49

 Stage
 Each job gets divided into smaller sets of tasks called

stages
 The output of one stage is the input of the next stage(s)

▪ Except the stages that compute (part of) the final result (i.e., the
stages without output edges in the graph representing the
workflow of the application)
▪ The outputs of those stages is stored in HDFS or a database

 The shuffle operation is always executed between two
stages
▪ Data must be grouped/repartitioned based on a grouping criteria

that is different with respect to the one used in the previous stage
▪ Similar to the shuffle operation between the map and the reduce

phases in MapReduce
▪ Shuffle is a heavy operation

50

 Count the number of lines of the input file

 The name of the file is specified by using a
command line parameter (i.e., args[0])

 Print the results on the standard output

52

package it.polito.bigdata.spark.linecount;

import org.apache.spark.api.java.*;
import org.apache.spark.SparkConf;

public class DriverSparkBigData {
 public static void main(String[] args) {

 String inputFile;
 long numLines;

 inputFile=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf=new SparkConf().setAppName("Spark Line Count");

 // Create a Spark Context object
 JavaSparkContext sc = new JavaSparkContext(conf);

53

 // Build an RDD of Strings from the input textual file
 // Each element of the RDD is a line of the input file
 JavaRDD<String> lines=sc.textFile(inputFile);

 // Count the number of lines in the input file
 // Store the returned value in the local variable numLines
 numLines=lines.count();

 // Print the output in the standard output (stdout)
 System.out.println("Number of lines="+numLines);

 // Close the Spark Context object
 sc.close();
 }
}

54

package it.polito.bigdata.spark.linecount;

import org.apache.spark.api.java.*;
import org.apache.spark.SparkConf;

public class DriverSparkBigData {
 public static void main(String[] args) {

 String inputFile;
 long numLines;

 inputFile=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf=new SparkConf().setAppName("Spark Line Count");

 // Create a Spark Context object
 JavaSparkContext sc = new JavaSparkContext(conf);

55

Local Java variables.
They are allocated in the main memory
of the same process of the object instancing
the Driver Class

 // Build an RDD of Strings from the input textual file
 // Each element of the RDD is a line of the input file
 JavaRDD<String> lines=sc.textFile(inputFile);

 // Count the number of lines in the input file
 // Store the returned value in the local variable numLines
 numLines=lines.count();

 // Print the output in the standard output (stdout)
 System.out.println("Number of lines="+numLines);

 // Close the Spark Context object
 sc.close();
 }
}

56

Local Java variables.
They are allocated in the main memory
of the same process of the object instancing
the Driver Class

RDD.
It is allocated/stored in the main memory
or in the local disk of the executors of the
worker nodes

 Local variables
 Can be used to store only “small” objects/data

▪ The maximum size is equal to the main memory of the
process associated with the Driver

 RDDs
 Are used to store “big/large” collections of

objects/data in the nodes of the cluster
▪ In the main memory of the worker nodes, when it is

possible

▪ In the local disks of the worker nodes, when it is
necessary

57

 Word Count implemented by means of Spark

 The name of the input file is specified by using a
command line parameter (i.e., args[0])

 The output of the application (i.e., the pairs (word,
num. of occurrences) is stored in and output
folder (i.e., args[1])

 Note: Do not worry about details

58

package it.polito.bigdata.spark.wordcount;

import java.util.Arrays;
import org.apache.spark.api.java.*;
import org.apache.spark.SparkConf;
import scala.Tuple2;

public class SparkWordCount {
 @SuppressWarnings("serial")
 public static void main(String[] args) {

 String inputFile=args[0];
 String outputPath=args[1];

 // Create a configuration object and set the name of the application
 SparkConf conf=new SparkConf().setAppName("Spark Word Count");

 // Create a Spark Context object
 JavaSparkContext sc = new JavaSparkContext(conf);

59

 // Build an RDD of Strings from the input textual file
 // Each element of the RDD is a line of the input file
 JavaRDD<String> lines=sc.textFile(inputFile);

 // Split/transform the content of lines in a
 // list of words an store in the words RDD
 JavaRDD<String> words =
 lines.flatMap(line -> Arrays.asList(line.split("\\s+")).iterator());

 // Map/transform each word in the words RDD
 // to a pair (word,1) an store the result in the words_one RDD
 JavaPairRDD<String, Integer> words_one = words.mapToPair(word ->
 new Tuple2<String, Integer>(word.toLowerCase(), 1));

60

 // Count the num. of occurrences of each word.
 // Reduce by key the pairs of the words_one RDD and store
 // the result (the list of pairs (word, num. of occurrences)
 // in the counts RDD
 JavaPairRDD<String, Integer> counts =
 words_one.reduceByKey((c1, c2) -> c1 + c2);

 // Store the result in the output folder
 counts.saveAsTextFile(outputPath);

 // Close the Spark Context object
 sc.close();
 }
}

61

package it.polito.bigdata.spark.wordcount;

import java.util.Arrays;
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.*;
import org.apache.spark.SparkConf;
import scala.Tuple2;

public class SparkWordCount {
 @SuppressWarnings("serial")
 public static void main(String[] args) {

 String inputFile=args[0];
 String outputPath=args[1;]

 // Create a configuration object and set the name of the application
 SparkConf conf=new SparkConf().setAppName("Spark Word Count");

 // Create a Spark Context object
 JavaSparkContext sc = new JavaSparkContext(conf);

62

 // Build an RDD of Strings from the input textual file
 // Each element of the RDD is a line of the input file
 JavaRDD<String> lines=sc.textFile(inputFile);

 // Split/transform the content of lines in a
 // list of words an store in the words RDD
 JavaRDD<String> words = lines.flatMap(
 new FlatMapFunction<String, String>() {
 @Override
 public Iterable<String> call(String s) {
 return Arrays.asList(s.split("\\s+"));
 }
 });

63

 // Map/transform each word in the words RDD
 // to a pair (word,1) an store the result in the words_one RDD
 JavaPairRDD<String, Integer> words_one =
 words.mapToPair(
 new PairFunction<String, String, Integer>() {
 @Override
 public Tuple2<String, Integer> call(String word) {
 return new Tuple2<String, Integer>(word.toLowerCase(), 1);
 }
 });

64

 // Count the num. of occurrences of each word.
 // Reduce by key the pairs of the words_one RDD and store
 // the result (the list of pairs (word, num. of occurrences)
 // in the counts RDD
 JavaPairRDD<String, Integer> counts =
 words_one.reduceByKey(
 new Function2<Integer, Integer, Integer {
 @ Override
 public Integer call(Integer c1, Integer c2) {
 return c1 + c2;
 }
 });

65

 // Store the result in the output folder
 counts.saveAsTextFile(outputPath);

 // Close the Spark Context object
 sc.close();
 }
}

66

