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What is Cluster Analysis?

Â Finding groups of objects such that the objects in a group 
will be similar (or related) to one another and different 
from (or unrelated to) the objects in other groups

Inter -cluster 
distances are 

maximized
Intra -cluster 
distances are 

minimized

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Applications of Cluster Analysis

Â Understanding

Â Group related documents 
for browsing, group genes 
and proteins that have 
similar functionality, or 
group stocks with similar 
price fluctuations

Â Summarization

Â Reduce the size of large 
data sets

 Discovered Clusters Industry Group 

1 
Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 

Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 

Sun-DOWN 

 

 

Technology1-DOWN 

2 
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 

ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 

Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl -DOWN 

 

 

Technology2-DOWN 

3 
Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 

MBNA-Corp-DOWN,Morgan-Stanley-DOWN 
 

Financial-DOWN 

4 
Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 

Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 

Oil-UP 

 

 

Clustering precipitation in 
Australia

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Notion of a Cluster can be Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Types of Clusterings

Â A clustering is a set of clusters

Â Important distinction between 
hierarchical and partitional sets of 
clusters

Â Partitional Clustering
Â Divides data objects into non-overlapping subsets 

(clusters) such that each data object is in exactly 
one subset

Â Hierarchical clustering
Â A set of nested clusters organized as a hierarchical 

tree 

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Partitional Clustering

Original Points A Partitional  Clustering

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Hierarchical Clustering

p4

p1
p3

p2

 

p4 

p1 
p3 

p2 

p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering Non-traditional Dendrogram

Traditional Dendrogram

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Other Distinctions Between Sets of Clusters

Â Exclusive versus non-exclusive
Â In non-exclusive clustering, points may belong to multiple 

clusters.

Â Fuzzy versus non-fuzzy
Â In fuzzy clustering, a point belongs to every cluster with some 

weight between 0 and 1
Â Weights must sum to 1
Â Probabilistic clustering has similar characteristics

Â Partial versus complete
Â In some cases, we only want to cluster some of the data

Â Heterogeneous versus homogeneous
Â Cluster of widely different sizes, shapes, and densities

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Types of Clusters

Â Well-separated clusters

Â Center-based clusters

Â Contiguous clusters

Â Density-based clusters

Â Property or Conceptual

Â Described by an Objective Function

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Types of Clusters: Well Separated

Â Well-Separated Clusters: 
Â A cluster is a set of points such that any point in a cluster is 

closer (or more similar) to every other point in the cluster than 
to any point not in the cluster. 

3 well-separated clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Types of Clusters: Center-Based

Â Center-based
Â A cluster is a set of objects such that an object in a cluster is 
closer (more similar) to the ñcenterò of a cluster, than to the 
center of any other cluster  

Â The center of a cluster is often a centroid, the average of all 
the points in the cluster, or a medoid, the most 
ñrepresentativeò point of a cluster 

4 center-based clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Types of Clusters: Contiguity-Based

Â Contiguous Cluster (Nearest neighbor or 
Transitive)
Â A cluster is a set of points such that a point in a cluster is 

closer (or more similar) to one or more other points in the 
cluster than to any point not in the cluster.

8 contiguous clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Types of Clusters: Density-Based

Â Density-based
Â A cluster is a dense region of points, which is separated by 

low-density regions, from other regions of high density. 

Â Used when the clusters are irregular or intertwined, and when 
noise and outliers are present. 

6 density-based clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Types of Clusters: Conceptual Clusters

Â Shared Property or Conceptual Clusters
Â Finds clusters that share some common property or represent 

a particular concept. 

. 

2 Overlapping Circles

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Clustering Algorithms

Â K-means and its variants

Â Hierarchical clustering

Â Density-based clustering

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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K-means Clustering

Â Partitional clustering approach 

Â Each cluster is associated with a centroid (center point) 

Â Each point is assigned to the cluster with the closest 
centroid

Â Number of clusters, K, must be specified

Â The basic algorithm is very simple

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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K-means Clustering ïDetails
Â Initial centroids are often chosen randomly.

Â Clusters produced vary from one run to another.

Â The centroid is (typically) the mean of the points in the 
cluster.

Â óClosenessô is measured by Euclidean distance, cosine 
similarity, correlation, etc.

Â K-means will converge for common similarity measures 
mentioned above.

Â Most of the convergence happens in the first few 
iterations.
Â Often the stopping condition is changed to óUntil relatively few 

points change clustersô

Â Complexity is O( n * K * I * d )
Â n = number of points, K = number of clusters, 

I = number of iterations, d = number of attributes

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Two different K-means Clusterings
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From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Importance of Choosing Initial Centroids
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From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Evaluating K-means Clusters

Â Most common measure is Sum of Squared Error (SSE)
Â For each point, the error is the distance to the nearest cluster

Â To get SSE, we square these errors and sum them.

Â x is a data point in cluster Ci and mi is the representative point for 
cluster Ci

Â can show that mi corresponds to the center (mean) of the cluster

Â Given two clusters, we can choose the one with the smallest error

Â One easy way to reduce SSE is to increase K, the number of clusters
Â A good clustering with smaller K can have a lower SSE than a poor 

clustering with higher K

ää
= Í

=
K

i Cx

i

i

xmdistSSE
1

2 ),(

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Starting with two initial centroids in one cluster of each pair of clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

Â Multiple runs
Â Helps, but probability is not on your side

Â Sample and use hierarchical clustering to 
determine initial centroids

Â Select more than k initial centroids and then 
select among these initial centroids
Â Select most widely separated

Â Postprocessing

Â Bisecting K-means
Â Not as susceptible to initialization issues

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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K-means parameter setting

Â Elbow graph (Knee approach)
Â Plotting the quality measure trend (e.g., SSE) against K

Â Choosing the value of K 
Â the gain from adding a centroid is negligible

Â The reduction of the quality measure is not interesting anymore

Network traffic data
Medical records
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Handling Empty Clusters

Â Basic K-means algorithm can yield empty 
clusters

Â Several strategies

Â Choose the point that contributes most to SSE

Â Choose a point from the cluster with the highest 
SSE

Â If there are several empty clusters, the above can 
be repeated several times.

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Pre-processing and Post-processing

Â Pre-processing

Â Normalize the data

Â Eliminate outliers

Â Post-processing

Â Eliminate small clusters that may represent outliers

Â Split ólooseô clusters, i.e., clusters with relatively high SSE

Â Merge clusters that are ócloseô and that have relatively low 
SSE

Â Can use these steps during the clustering process

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Bisecting K-means

Â Bisecting K-means algorithm
Â Variant of K-means that can produce a partitional or a 

hierarchical clustering

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006



33DB
MG

Bisecting K-means Example

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Limitations of K-means

Â K-means has problems when clusters are of 
differing 

Â Sizes

Â Densities

Â Non-globular shapes

Â K-means has problems when the data 
contains outliers.

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Original Points K-means Clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Overcoming K-means Limitations
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Original Points K-means Clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Overcoming K-means Limitations
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Hierarchical Clustering 

Â Produces a set of nested clusters organized 
as a hierarchical tree

Â Can be visualized as a dendrogram

Â A tree like diagram that records the sequences of 
merges or splits
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From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Strengths of Hierarchical Clustering

Â Do not have to assume any particular number 
of clusters
Â Any desired number of clusters can be obtained 
by ócuttingô the dendogram at the proper level

Â They may correspond to meaningful 
taxonomies
Â Example in biological sciences (e.g., animal 
kingdom, phylogeny reconstruction, é)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Hierarchical Clustering

Â Two main types of hierarchical clustering

Â Agglomerative:  

Â Start with the points as individual clusters

Â At each step, merge the closest pair of clusters until only one cluster (or 
k clusters) left

Â Divisive:  

Â Start with one, all -inclusive cluster 

Â At each step, split a cluster until each cluster contains a point (or there 
are k clusters)

Â Traditional hierarchical algorithms use a similarity or distance 
matrix

Â Merge or split one cluster at a time

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006



44DB
MG

Agglomerative Clustering Algorithm

Â More popular hierarchical clustering technique

Â Basic algorithm is straightforward
1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity matrix

6. Until only a single cluster remains

Â Key operation is the computation of the proximity of 
two clusters
Â Different approaches to defining the distance between 

clusters distinguish the different algorithms

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Starting Situation 

Â Start with clusters of individual points and a 
proximity matrix

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006



46DB
MG

Intermediate Situation

Â After some merging steps, we have some clusters 
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C2 C5
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C2C1
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p1 p2 p3 p4 p9 p10 p11 p12

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Intermediate Situation

Â We want to merge the two closest clusters (C2 and C5)  and 
update the proximity matrix. 
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From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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After Merging

Â The question is ñHow do we update the proximity matrix?ò 

C1

C4

C2 U C5

C3

?        ?        ?        ?    

?

?

?

C2 
U 
C5C1

C1

C3

C4

C2 U C5

C3 C4

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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How to Define Inter -Cluster Similarity
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From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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