7
=
O
wid
7
>
)
wid
=
0
=
0
o
-
c
S
=
Q
7
S
a
S
wid
=
(@]

ion

imizat

Query opt

DBMS Architecture

SQL INSTRUCTION

l
C o=)

1 CONCURRENCY CONTROL
MANAGEMENT OF ACCESS

METHODS
/'y

A

BUFFER MANAGER
A

RELIABILITY MANAGEMENT

\ 4

Index Files ¢ Syt DATABASE
Data Files +— Catalog

> It selects an efficient strategy for query execution

® [t is a fundamental building block of a relational
DBMS

>~ It guarantees the data independence property

® The form in which the SQL query is written does
not affect the way in which it is implemented

® A physical reorganization of data does not require
rewriting SQL queries

>~ It automatically generates a guery execution plan
® [t was formerly hard-coded by a programmer
>~ The automatically generated execution plan is
usually more efficient
® [t evaluates many different alternatives

® [t exploits statistics on data, stored in the system
catalog, to make decisions

® [t exploits the best known strategies

® [t dynamically adapts to changes in the data
distribution

SQL
QUERY

v

LEXICAL, SYNTACTIC
AND SEMANTIC
ANALYSIS

Query optimizer

>~ Analysis of a statement to detect
® |exical errors

® e.g., misspelled keywords
® Syntactic errors
® errors in the grammar of the SQL language

® Semantic errors

® references to objects which do not actually exist in
the database (e.g, attributes or tables)

® information in the data dictionary is needed

2> Output

® Internal representation in (extended) relational
algebra

>~ Why relational algebra?

® [t explicitly represents the order in which operators
are applied
® It is procedural (different from SQL)
® There is a corpus of theorems and properties
® exploited to modify the initial query tree

Query optimizer

SQL
QUERY

v
LEXICAL, SYNTACTIC
AND SEMANTIC 4_____4Eiiiij DATA
ANALYSIS DICTIONARY

INTERNAL REPRESENTATION
BASED ON RELATIONAL ALGEBRA

'

ALGEBRAIC
OPTIMIZATION

>~ Execution of algebraic transformations
considered to be always beneficial

® Example: anticipation of selection with respect to
join

>~ Should eliminate the difference among different
formulations of the same query

>~ This step is usually independent of the data
distribution

2> Output
® Query tree in “canonica

III

form

Query optimizer

SQL
QUERY

v
LEXICAL, SYNTACTIC
AND SEMANTIC 4_____4Eiiiij DATA
ANALYSIS DICTIONARY

INTERNAL REPRESENTATION
BASED ON RELATIONAL ALGEBRA

'

ALGEBRAIC
OPTIMIZATION

l

“‘CANONICAL” QUERY TREE

'

COST BASED
OPTIMIZATION

10

>~ Selection of the “best” execution plan by
evaluating execution cost

® Selection of

® the best access method for each table

® the best algorithm for each relational operator
among available alternatives

® Based on a cost model for access methods and
algorithms

>~ Generation of the code implementing the best
strategy

11

- i . g, =
-

g ‘ 'l fawiq»- ’ 1 _ - =~

b2

Cost based optimization

2> Output
® Access program in executable format
® It exploits the internal structures of the DBMS

® Set of dependencies

® conditions on which the validity of the query plan
depends

® e.g., the existence of an index

12

Query optimizer

SQL
QUERY
v

LEXICAL, SYNTACTIC
AND SEMANTIC ‘_@ DATA
ANALYSIS DICTIONARY

INTERNAL REPRESENTATION
BASED ON RELATIONAL ALGEBRA

'

ALGEBRAIC
OPTIMIZATION

l

“‘CANONICAL” QUERY TREE

COST BASED DATA PROFILES
OPTIMIZATION (STATISTICS ON

/ \ DATA)

D BG ACCESS PROGRAM SET OF DEPENDENCIES 13

>~ Compile and go

® Compilation and /mmediate execution of the
statement

® No storage of the query plan
® Dependencies are not needed

14

>~ Compile and store

® The access plan is stored in the database together
with its dependencies

® It is executed on demand

® [t should be recompiled when the data structure
changes

G 15

7
=
O
wid
7
>
)
wid
=
0
=
0
o
-
c
S
=
Q
7
S
a
S
wid
=
(@]

ion

t

Algebraic optimiza

16

SQL
QUERY
v

LEXICAL, SYNTACTIC
AND SEMANTIC ‘_@ DATA
ANALYSIS DICTIONARY

INTERNAL REPRESENTATION
BASED ON RELATIONAL ALGEBRA

ALGEBRAIC
OPTIMIZATION

v

“‘CANONICAL” QUERY TREE

COST BASED DATA PROFILES
OPTIMIZATION (STATISTICS ON

/ \ DATA)

ACCESS PROGRAM SET OF DEPENDENCIES 17

- -
“ - Sl

i, ey : -
et LN

b2

Algebraic optimization

> It is based on equivalence transformations

® Two relational expressions are eqguivalent if they
both produce the same query result for any
arbitrary database instance

>~ Interesting transformations

® reduce the size of the intermediate result to be
stored in memory

® prepare an expression for the application of a
transformation which reduces the size of the
intermediate result

18

1. Atomization of selection
® Gt \r2 (E) = 0, (01 (E)) = OFy (OF; (E))

19

p ~ -
e e
- - ==
2 /

Transformations

1. Atomization of selection

® Gt \r2 (E) = 0, (01 (E)) = OFy (OF; (E))
2. Cascading projections

® m(E) = ny (myy(E))

20

1. Atomization of selection

® G pp (E) = op (0 (E)) = of (o (E))
2. Cascading projections
® m(E) = ny (myy(E))
3. Anticipation of selection with respect to join
(pushing selection down)
® o (EP]E,) = E;P<(ok (E))
® Fis a predicate on attributes in E, only

4. Anticipation of projection with respect to join
® m(E > Ey) = m ((myy, 5(B0))P<p (m2,5(E2)))
® |1=L-Schema(E,)
® |2 =L -Schema(E,)

®] = set of attributes needed to evaluate join
predicate p

22

5. Join derivation from Cartesian product
® o (E; xE;) =EPIE,
® predicate F only relates attributes in E; and E,

5. Join derivation from Cartesian product

® o (E; xE;) =EPIE,

® predicate F only relates attributes in E; and E,
6. Distribution of selection with respect to union

® oi(E;UE,) =(or(E)) v (cr(Ey))

24

Transformations

5. Join derivation from Cartesian product

® o (E; xE;) =EPIE,

® predicate F only relates attributes in E; and E,
6. Distribution of selection with respect to union

® oi(E; VE;) = (o (Ey)) v (of (E))
/. Distribution of selection with respect to

difference
® o (E; - E) = (o (Ey)) — (o (Ey))
= (o (E)) -

P .’ -
= - —
2 /

Transformations

8. Distribution of projection with respect to union
® n(E; UE) = (ny(Ey)) v (my(Ey))

26

8. Distribution of projection with respect to union
® n(E; UE) = (ny(Ey)) v (my(Ey))

>~ Can projection be distributed with respect to
difference?

iy (E1 - Ey) = (ny(Ey)) - (ny(Ey))

27

8. Distribution of projection with respect to union
® n(E; UE) = (ny(Ey)) v (my(Ey))

>~ Can projection be distributed with respect to
difference?

Ty (Ep = B =(7x(E>))

® This equivalence only holds if X includes the
primary key or a set of attributes with the same
properties (unique and not null)

28

9. Other properties
® Gy r(E) = (o (E)) v (og (E))
® G \rE) = (o (E)) » (g, (E))

29

10. Distribution of join with respect to union
® ED(E,UE,) = (EME,) u (E DXE,)

>~ All binary operators are commutative and
associative except for difference

30

Example

2> SQL query

SELECT DISTINCT DName

FROM EMP, DEPT

WHERE EMP.Dept#=DEPT.Dept#
AND Salary > 1000;

- -
h N it

e e g S Nl - o

Example: Algebraic transformations

T DName (GEMP.Dept#=DEPT.Dept# A Salary >1000 (EMP x DEPT))

32

- -
h N it

e e g S Nl - o

Example: Algebraic transformations

T DName (GEMP.Dept#=DEPT.Dept# A Salary >1000 (EMP x DEPT))

Prop #1 ‘

7tDName(GSaIary >1000 (GEMP.Dept#=DEPT.Dept# (EMPXDEPT))

33

E N i : S

. “ﬁ "4‘(';’ - ‘ = = -

Example: Algebraic transformations

T DName (GEMP.Dept#=DEPT.Dept# A Salary >1000 (EMP x DEPT))

Prop #1 ‘

7tDName(GSaIary >1000 (GEMP.Dept#=DEPT.Dept# (EMPXDEPT))

Prop #5 ‘

TCDName(GSaIary >1000 (EMP > DEPT)

34

o -
h N it

" '-s -ﬁﬁ' "‘”-w":"" — ‘ = -

Example: Algebraic transformations

TcDName(GSaIary >1000 (EMP > DEPT)

Prop #3 ‘

TcDName(GSalary -1000 (EMP))><1 DEPT)

35

R N u : ._,:'

. “ﬁ "4‘(';’ - ‘ = =

Example: Algebraic transformations

ToNamel Osalary >1000 (EMP <1 DEPT)

Prop #3 ‘

TcDName(GSalary -1000 (EMP))><1 DEPT)

Prop #2 and #4 ‘

T'DName ((TCDept# (GSaIary >1000(E|VI P))[><] (nDept#,DName(DEPT)))

36

Example: Query tree

>~ Final query tree

nDName

-

TcDept# nDept# DName
GSaIary>1000 DEPT

EMP

37

E o i : .,,:'

b2

Example: Cardinalities

® Cardinality (EMP) = 10,000
® Cardinality (DEPT) = 100
® Cardinality (EMP where Salary > 1000) = 50

38

7
=
O
wid
7
>
)
wid
=
0
=
0
o
-
c
S
=
Q
7
S
a
S
wid
=
(@]

ion

t

Cost based optimiza

39

SQL
QUERY
v

LEXICAL, SYNTACTIC
AND SEMANTIC ‘—Ei
ANALYSIS

INTERNAL REPRESENTATION
BASED ON RELATIONAL ALGEBRA

'

ALGEBRAIC
OPTIMIZATION

l

“‘CANONICAL” QUERY TREE

L

COST BASED
OPTIMIZATION

ACCESS PROGRAM SET OF DEPENDENCIES

DATA
DICTIONARY

DATA PROFILES
(STATISTICS ON
DATA)

40

2> It is based on

® Data profiles

® statistical information describing data distribution for
tables and intermediate relational expressions

® Approximate cost formulas for access operations

® Allow evaluating the cost of different alternatives for
executing a relational operator

7
=
O
wid
7
>
)
wid
=
0
=
0
o
-
c
S
=
Q
7
S
a
S
wid
=
(@]

Data profiles

42

>~ Quantitative information on the characteristics of
tables and columns

® cardinality (# of tuples) in each table T

® also estimated for intermediate relational
expressions

® size in bytes of tuples in T
® size in bytes of each attribute A;in T

® number of distinct values of each attribute in T
® cardinality of the active domain of the attribute

® min and max values of each attribute AjinT

43

.

Table profiles

>~ Table profiles are stored in the data dictionary
>~ Profiles should be periodically refreshed by re-
analyzing data in the tables
® Update statistics command

® Executed on demand

® immediate execution during transaction processing
would overload the system

44

>~ Table profiles are exploited to estimate the size
of intermediate relational expressions

® For the selection operator

Card (o, -, (T)) = Card (T)/ Val (A;inT)

® Val (A in T) = # of distinct values of A, in T (active
domain)

It holds only under the hypothesis of wniform
distribution

45

7
=
O
wid
7
>
)
wid
=
0
=
0
o
-
c
S
=
Q
7
S
a
S
wid
=
(@]

Access operators

46

Query tree

>~ Internal representation of the relational
expression as a query tree

nDName
7rDept# TCDept# DName
GSaIary> 1000 DEPT

EMP

Query tree

>~ Leaves correspond to the physical structures
® tables, indices

>~ Intermediate nodes are operations on data
supported by the given physical structure

® e.g., scan, join, group by

48

>~ Executes sequential access to all tuples in a table
® also called full table scan
>~ Operations performed during a sequential scan
® Projection
® discards unnecessary columns
® Selection on a simple predicate (Ai=V)
® Sorting based on an attribute list
® Insert, update, delete

49

2 Classical algorithms in computer science are
exploited

® e.g., quick sort

>~ Size of data is relevant
® memory sort
® sort on disk

50

>~ If available, it may exploit /ngex access
® B*-tree, hash, or bitmap
> Simple equality predicate A=v
® Hash, B*-tree, or bitmap are appropriate
> Range predicate v < A, < v,
® only Bt-tree is appropriate

>~ For predicates with /imited selectivity full table
scan is better

® if available, consider bitmap

51

600

Bitmap VS B-Tree

500

400

300

Disk space (MB)

200

0 5 10

15 20 25 30
NK

35 40 45

— B-Tree — Bitmap

B-tree NRxLen(Pointer)
Bitmap NR x NK x 1 bit

Len(Pointer) = 4x8 bit

Courtesy of Golfarelli, Rizzi,
“Data warehouse, teoria e

pratica della progettazione”,
McGraw Hill 2006 52

- -
‘ . ot

X q' , igpen - - 4 ——
ik, i ‘Q&\ ~ -

b2

Predicate evaluation

2 Conjunction of predicates A= v; A A=V,
® The most selective predicate is evaluated first
® Table is read through the index

® Next the other predicates are evaluated on the
intermediate result

2~ Optimization

® First compute the /ntersection of bitmaps or RIDs
coming from available indices

® Next table read and evaluation of remaining
predicates

53

>~ Which female students living in Piemonte are
exempt from enrollment fee?

RID | Gender | Exempt Region
1 M Y Piemonte
2 F Y Liguria
3 M N Puglia
4 M N Sicilia
5 F Y Piemonte

5
C

Gender Exempt Piemonte
0 1 1
1 1 0
0 0 0
0 0 0
1 1 1
RID 5 >4

“ - ‘*_.

X q' , igpen - - 4 ——
" ,' = i ‘Q&\ ~ -

b2

Predicate evaluation

2~ Disjunction of predicates A= v; V A= v,
® Index access can be exploited on/y if all predicates
are supported by an index

® otherwise full table scan

55

>~ A critical operation for a relational DBMS
® connection between tables is based on values

® instead of pointers

® size of the intermediate result is typically larger
than the smaller table

2> Different join algorithms
® Nested loop
® Merge scan join
® Hash join
® Bitmapped join

56

Outer table

external
scan

—

internal

attribute

or direct scan

I_ join —[

Nested loop

Inner table

57

Nested loop

>~ A single full scan is done on the outer table

>~ For each tuple in the outer table

® 3 full scan of the inner table is performed, looking
for corresponding values

> Also called “brute force”

58

p ~ -
e e
- - > i
2 / ’

Nested loop

> Efficient when

® inner table is small and fits in memory
® optimized scan

® join attribute in the inner table is indexed
® index scan
2 Execution cost
® The nested loop join technique is not symmetric

® The execution cost depends on which table takes
the role of inner table

59

Merge scan

right
Left table left scan Right table
SCan
A A
d a
 , b ___________
___________ b | d
___________ b |«
C
e
e

I_ join —[

attribute 60

Merge scan

2~ Both tables are sorted on the join attributes

>~ The two tables are scanned in parallel
® tuple pairs are generated on corresponding values

2 Execution cost
® The merge scan technique is symmetric
® requires sorting both tables
® may be sorted by a previous operation
® may be read through a clustered index on join
attributes

2~ More used in the past

® efficient for large tables, because sorted tables

may be stored on disk o

DG

Hash Join

From From
igh I
Ie:i;:ble Buckets for Buckets for "9 Ht\st:b .
@ Jeft table right table @

d [D<] —— e

e m

d - [><] - d

C W

]]

p | > — |

Lo]

D“B/\G Attribute e

Hash join

>~ Application of the same hash function to the join
attributes in both tables

® Tuples to be joined end up in the same buckets

® collisions are generated by tuples yielding the same
hash function result with different attribute value

® A local sort and join is performed into each bucket
>~ Very fast join technique

63

>~ Bit matrix that precomputes the join between
two tables A and B

® One column for each RID in table A
® One row for each RID in table B
>~ Position (i, j) of the matrix is
® 1 if tuple with RID j in table A joins with tuple with

RID i in table B

_ RID | 1 2 n
® (O otherwise N o | . ,
> Updates may beslow | 2 | o | 1 0
3 0 0 1
4 |(1)] o 0
. 0 64

tmapped join

>~ Typically used in OLAP queries

® joining several tables with a large central table
>~ Example

® Exam table, joined to Student and Course tables
>~ Exploits one or more bitmapped join indices

® One for each pair of joined tables
>~ Access to the large central table is the last step

65

. ~ -
o
- o

Bitmapped join

> Complex queries may exploit jointly
® bitmapped join indices
® bitmap indices for predicates on single tables

66

>~ Average score of male students for exams of
courses in the first year of the master degree
® STUDENT (Reg#, SName, Gender)
® COURSE (Course#, CName, CourseYear)

® EXAM (Reg#, Course#, Date, Grade)

SELECT AVG (Grade)

FROM STUDENT S, EXAM E, COURSE C
WHERE E.Reg# = S.Reg#

AND E.Course# = C.Course#

AND CourseYear = 1M’

AND Gender = ‘M’;

67

... FROM EXAM E, COURSE C
WHERE E.Course# = C.Course#

AND CourseYear = ‘1M’ ...

RIDs 1 and 4 ?

Bitmapped join index
for Course-Exams join

RID || 1 4 || ..
1 || o 1 || 1
2 || o 1 || o
3 || o o || 1
4 || 1 o | o

Bitmap for CourseYear attribute

RID | ..
1| o 0
2 | 0 0
3 | o 1
4 | 0 0
5 | 1 0
1 4 RIDy
0 1 1
_> 0 | or | 1 1
0 0 0
1 0 1

08

RID

AND

- O |-

e

bitmap for Course-Exam bitmap for Student-Exam
predicates and join

predicates and join

RID,

= OO |~

AN

RID

= OO |-

RIDs of Exam table
for tuples to be read

69

>~ Sort based

® Sort on the group by attributes

® Next compute aggregate functions on groups
>~ Hash based

® Hash function on the group by attributes

® Next sort each bucket and compute aggregate
functions

> Materialized views may be exploited to improve
the performance of aggregation operations

70

7
=
O
wid
7
>
)
wid
=
0
=
0
o
-
c
S
=
Q
7
S
a
S
wid
=
(@]

ion

Execution plan select

71

2~ Inputs
® Data profiles
® Internal representation of the query tree
2 Qutput
® "Optimal” query execution plan
® Set of dependencies
> It evaluates the cost of different alternatives for
® reading each table
® executing each relational operator

2 It exploits approximate cost formulas for access

operations

D“B/\G 72

>~ The search for the optimal plan is based on the
following dimensions
® The way data is read from disk
® c.g., full scan, index
® The execution order among operators
® c.g., join order between two join operations

® The technique by means of which each operator is
implemented

® e.g., the join method
® \When to perform sort (if sort is needed)

73

“ - ‘*_.

General approach to optimization

>~ The optimizer builds a tree of alternatives in
which

® cach internal node makes a decision on a variable

® cach leaf represents a complete query execution
plan

74

Example

>~ Given 3 tables
® RS T
>~ Compute the join
RIS T
>~ Execution alternatives
® 4 join techniques to evaluate (for both joins)
® 3 join orders

® In total, at most
® 4 * 4 * 3 = 48 different alternatives

75

|><]1 NESTED LOOP

R INNER

|

><] , NESTED LOOP

S INNER

[><], MERGE scaN

><] , NESTED LOOP

T INNER

>< , NESTED LOOP

T ouTer

I

LEAF NODE

/'

[><, Hast JoIN

76

>~ The optimizer selects the leaf with the lowest
cost

>~ General formula
CTotaI - CI/O X nI/O + Ccpu X ncpu
® N, is the number of I/O operations
® n.,, is the number of CPU operations

>~ The selection is based on operation research
optimization techniques

® e.g., branch and bound

77

>~ The final execution plan is an approximation of
the best solution

>~ The optimizer looks for a solution which is of the
same order of magnitude of the “best” solution

® For compile and go

® it stops when the time spent in searching is
comparable to the time required to execute the
current best plan

78

