

 Spark MLlib is the Spark component
providing the machine learning/data mining
algorithms

 Pre-processing techniques

 Classification (supervised learning)

 Clustering (unsupervised learning)

 Itemset mining

3

 MLlib APIs are divided into two packages:
 org.apache.spark.mllib

▪ It contains the original APIs built on top of RDDs

▪ This version of the APIs is in maintenance mode and will
be probably deprecated in the next releases of Spark

 org.apache.spark.ml
▪ It provides higher-level API built on top of DataFrames

(i.e, Dataset<Row>) for constructing ML pipelines

▪ It is recommended because the DataFrame-based API is
more versatile and flexible

▪ It provides the pipeline concept

4

 Spark MLlib is based on a set of basic local
and distributed data types
 Local vector

 Labeled point

 Local matrix

 Distributed matrix

 ..
 DataFrames for ML contain objects based on

those basic data types

6

 Local org.apache.spark.ml.linalg.Vector
objects in MLlib are used to store vectors of
double values

 Dense and sparse vectors are supported

 The MLlib algorithms work on vectors of doubles

 Vectors of doubles are used to represent the input
records/data

▪ One vector for each input record

 Non double attributes/values must be mapped to
double values

7

 Dense and sparse representations are
supported

 E.g., a vector (1.0, 0.0, 3.0) can be
represented
 in dense format as [1.0, 0.0, 3.0]

 or in sparse format as (3, [0, 2], [1.0, 3.0])
▪ where 3 is the size of the vector

▪ The array [0,2] contains the indexes of the non-zero cells

▪ The array [1.0, 3.0] contains the values of the non-zero
cells

8

 The following code shows how a vector can be
created in Spark

 import org.apache.spark.ml.linalg.Vector;
 import org.apache.spark.ml.linalg.Vectors;

 // Create a dense vector (1.0, 0.0, 3.0).
 Vector dv = Vectors.dense(1.0, 0.0, 3.0);

 // Create a sparse vector (1.0, 0.0, 3.0) by
 // specifying its indices and values corresponding
 // to non-zero entries
 Vector sv = Vectors.sparse(3, new int[] {0, 2},
 new double[] {1.0, 3.0});

9

 The following code shows how a vector can be
created in Spark

 import org.apache.spark.ml.linalg.Vector;
 import org.apache.spark.ml.linalg.Vectors;

 // Create a dense vector (1.0, 0.0, 3.0).
 Vector dv = Vectors.dense(1.0, 0.0, 3.0);

 // Create a sparse vector (1.0, 0.0, 3.0) by
 // specifying its indices and values corresponding
 // to non-zero entries
 Vector sv = Vectors.sparse(3, new int[] {0, 2},
 new double[] {1.0, 3.0});

10

Size of the vector

Indexes of non-empty cells

Values of non-empty cells

 Local
org.apache.spark.ml.feature.LabeledPoint
objects are local vectors of doubles associated
with a label
 The label is a double value

▪ For the classification problem, each class label is associated
with an integer value (casted to a double) ranging from 0 to
C-1, where C is the number of distinct classes

▪ For the regression problem, the label is the real value to
predict

 Both dense and sparse vectors associated with a label
are supported

11

 LabeledPoint objects are created by invoking
the LabelPoint LabeledPoint(double label,
Vector features) constructor
 Note that label is a double and also Vector is a vector

of doubles
 Given a LabeledPoint
 The double label() method returns the value of its

label
 The org.apache.spark.ml.linalg.Vector features() method

returns the vector containing the values of its
attributes/features

12

 In MLlib, labeled points are used by
supervised (classification and regression)
machine learning algorithms to represent
records/data points

 The label part represents the target of the
analysis

 The features part represents the predictive
attributes/features that are used to predict the
target attribute, i.e., the value of label

13

 Suppose the analyzed records/data points are
characterized by

 3 real (predictive) attributes/features

 A class label attribute that can assume two values:
0 or 1

▪ This is a binomial classification problem

 We want to predict the value of the class label
attribute based on the values of the other
attributes/features

14

 Consider the following two records/data
points

 Attributes/features = [1.0,0.0,3.0] -- Label = 1

 Attributes/features = [2.0,5.0,3.0] -- Label = 0

 Two LabeledPoint objects to represent those
two data points in Spark

15

 import org.apache.spark.ml.linalg.Vectors;
 import org.apache.spark.ml.feature.LabeledPoint;

 // Create a LabeledPoint for the first record/data point
 LabeledPoint record1=
 new LabeledPoint(1, Vectors.dense(1.0, 0.0, 3.0));

 // Create a LabeledPoint for the second record/data point
 LabeledPoint record2=
 new LabeledPoint(0, Vectors.dense(2.0, 5.0, 3.0));

16

 import org.apache.spark.ml.linalg.Vectors;
 import org.apache.spark.ml.feature.LabeledPoint;

 // Create a LabeledPoint for the first record/data point
 LabeledPoint record1=
 new LabeledPoint(1, Vectors.dense(1.0, 0.0, 3.0));

 // Create a LabeledPoint for the second record/data point
 LabeledPoint record2=
 new LabeledPoint(0, Vectors.dense(2.0, 5.0, 3.0));

17

Value of the class label

 import org.apache.spark.ml.linalg.Vectors;
 import org.apache.spark.ml.feature.LabeledPoint;

 // Create a LabeledPoint for the first record/data point
 LabeledPoint record1=
 new LabeledPoint(1, Vectors.dense(1.0, 0.0, 3.0));

 // Create a LabeledPoint for the second record/data point
 LabeledPoint record2=
 new LabeledPoint(0, Vectors.dense(2.0, 5.0, 3.0));

18

Vector of doubles representing the values of
the predictive features/attributes

 Consider again the following two
records/data points

 Attributes/features = [1.0,0.0,3.0] -- Label = 1

 Attributes/features = [2.0,5.0,3.0] -- Label = 0

 Now we will use sparse vectors instead of
dense ones to represent those two data
points in Spark

19

import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.feature.LabeledPoint;

// Create a LabeledPoint for the first record/data point
LabeledPoint record1= new LabeledPoint(1,
 Vectors.sparse(3, new int[] {0, 2}, new double[] {1.0, 3.0}));

// Create a LabeledPoint for the second record/data point
LabeledPoint record2= new LabeledPoint(0,
 Vectors.sparse(3, new int[] {0, 1, 2}, new double[] {2.0, 5.0, 3.0}));

20

 Spark MLlib uses DataFrames (alias of
Dataset<Row>) as input data

 Hence, the input of the MLlib algorithms are
structured data (i.e., tables)

 All input data must be represented by means
of “tables” before applying the MLlib
algorithms

 Document collections also must be transformed
into a tabular format

22

 The DataFrames used by the MLlib algorithms
are characterized by several columns associated
with different characteristics of the input data
 label

▪ Target of a classification/regression analysis

 features
▪ A vector containing the values of the attributes/features of

the input record/data points

 text
▪ The original text of a document before being transformed in a

tabular format

 ..

23

 Transformer
 A Transformer is an ML algorithm/procedure that

transforms one Dataset<Row> into another
Dataset<Row>
▪ E.g., A feature transformer might take a Dataset<Row>,

read a column (e.g., text), map it into a new column
(e.g., feature vectors), and output a new Dataset<Row>
with the mapped column appended

▪ E.g., a classification model is a Transformer that can be
applied on a Dataset<Row> with features and
transforms it into a Dataset<Row> with also the
prediction column

24

 Estimator
 An Estimator is a ML algorithm/procedure that is

applied on a Dataset<Row> to produce a Transformer
(a model)
▪ Each Estimator implements a method fit(), which accepts a

Dataset<Row> and produces a Model of type Transformer

 An Estimator abstracts the concept of a learning
algorithm or any algorithm that fits or trains on an
input dataset and returns a model
▪ E.g., The Logistic Regression classification algorithm is an

Estimator, and calling fit() on it a Logistic Regression Model is
built, which is a Model and hence a Transformer

25

 Pipeline
 A Pipeline chains multiple Transformers and

Estimators together to specify a Machine
learning/Data Mining workflow
▪ The output of a transformer/estimator is the input of the next

one in the pipeline

 E.g., a simple text document processing workflow
aiming at building a classification model includes
several steps
▪ Split each document into a set of words
▪ Convert each set of words into a numerical feature vector
▪ Learn a prediction model using the feature vectors and the

associated class labels

26

 Parameter

 All Transformers and Estimators share common
APIs for specifying parameters

27

 In the new APIs of Spark MLlib the use of the
pipeline approach is preferred/recommended

 This approach is based on the following steps
1. The set of Transformers and Estimators that are

needed are instantiated

2. A pipeline object is created and the sequence of
transformers and estimators associated with the
pipeline are specified

3. The pipeline is executed and a model is created

4. (optional) The model is applied on new data

28

 Spark MLlib provides a (limited) set of
classification algorithms

 Logistic regression

 Decision trees

 SVMs (with linear kernel)

▪ Only binary classification problem are supported by the
implemented SVMs

 Naïve Bayes

 …

30

 All the available classification algorithms are
based on two phases
 Model generation based on a set of training data

 Prediction of the class label of new unlabeled
data

 All the classification algorithms available in
Spark work only on numerical attributes
 Categorical values must be mapped to integer

values (i.e., numerical values) before applying the
MLlib classification algorithms

31

 All the Spark classification algorithms are built
on top of an input Dataset<Row> containing (at
least) two columns
 label

▪ The class label, i.e., the attribute to be predicted by the
classification model
▪ It is an integer value (casted to a double)

 features
▪ A vector of doubles containing the values of the predictive

attributes of the input records/data points
▪ The data type of this column is org.apache.spark.ml.linalg.Vector

32

 Consider the following classification problem
 We want to predict if new customers are good

customers or not based on their monthly income
and number of children

 Predictive attributes
▪ Monthly income

▪ Number of children

 Class Label (target attribute)
▪ Customer type: Good customer/Bad customer

▪ We map “Good customer” to 1 and “Bad customer” to 0

33

 Example of input training data

 i.e., the set of customers for which the value of
the class label is known

 They are used by the classification algorithm to
infer a classification model

34

CustomerType MonthlyIncome NumChildren

Good customer 1400.0 2

Bad customer 11105.5 0

Good customer 2150.0 2

 Input training data

 Input Dataset<Row> that must be generated as
input for the MLlib classification algorithms

 35

label features

1.0 [1400.0 , 2.0]

0.0 [11105.5, 0.0]

1.0 [2150.0 , 2.0]

CustomerType MonthlyIncome NumChildren

Good customer 1400.0 2

Bad customer 11105.5 0

Good customer 2150.0 2

 Input training data

 Input Dataset<Row> that must be generated as
input for the MLlib classification algorithms

 36

label features

1.0 [1400.0 , 2.0]

0.0 [11105.5, 0.0]

1.0 [2150.0 , 2.0]

CustomerType MonthlyIncome NumChildren

Good customer 1400.0 2

Bad customer 11105.5 0

Good customer 2150.0 2

The categorical values of CustomerType (the class label column) must
be mapped to integer values (finally casted to doubles)

 Input training data

 Input Dataset<Row> that must be generated as
input for the MLlib classification algorithms

 37

label features

1.0 [1400.0 , 2.0]

0.0 [11105.5, 0.0]

1.0 [2150.0 , 2.0]

CustomerType MonthlyIncome NumChildren

Good customer 1400.0 2

Bad customer 11105.5 0

Good customer 2150.0 2

The values of the predictive attributes are “stored” in vectors of doubles.
One single vector for each input record.

 Input training data

 Input Dataset<Row> that must be generated as
input for the MLlib classification algorithms

 38

label features

1.0 [1400.0 , 2.0]

0.0 [11105.5, 0.0]

1.0 [2150.0 , 2.0]

CustomerType MonthlyIncome NumChildren

Good customer 1400.0 2

Bad customer 11105.5 0

Good customer 2150.0 2

In the generated Dataset<Row> the names of the predictive attributes
are not preserved.

 The following slides show how to

 Create a classification model based on the logistic
regression algorithm

▪ The model is inferred by analyzing the training data, i.e.,
the example records/data points for which the value of
the class label is known

 Apply the model to new unlabeled data

▪ The inferred model is applied to predict the value of the
class label of new unlabeled records/data points

40

 In the following example, the input training data
is stored in a text file that contains
 One record/data point per line

 The records/data points are structured data with a
fixed number of attributes (four)
▪ One attribute is the class label

▪ We suppose that the first column of each record contains the class
label

▪ The other three attributes are the predictive attributes that
are used to predict the value of the class label

 The input file has not the header line

41

 Consider the following example input training
data file
1.0,0.0,1.1,0.1

0.0,2.0,1.0,-1.0

0.0,2.0,1.3,1.0

1.0,0.0,1.2,-0.5
 It contains four records/data points
 This is a binary classification problem because

the class label assumes only two values
 0 and 1

42

 The first operation consists in transforming
the content of the input training file into a
Dataset<Row> containing two columns
 label

 features
 In the following solution, we will first define

an RDD of LabeledPoint objects and then we
will “transform” it into a Dataset<Row>

 However, other approaches can be used to
achieve the same result

43

 Input training file

 1.0,0.0,1.1,0.1

 0.0,2.0,1.0,-1.0

 0.0,2.0,1.3,1.0

 1.0,0.0,1.2,-0.5

 Input training Dataset<Row> to be generated

44

label features

1.0 [0.0,1.1,0.1]

0.0 [2.0,1.0,-1.0]

0.0 [2.0,1.3,1.0]

1.0 [0.0,1.2,-0.5]

 Input training file

 1.0,0.0,1.1,0.1

 0.0,2.0,1.0,-1.0

 0.0,2.0,1.3,1.0

 1.0,0.0,1.2,-0.5

 Input training Dataset<Row> to be generated

45

label features

1.0 [0.0,1.1,0.1]

0.0 [2.0,1.0,-1.0]

0.0 [2.0,1.3,1.0]

1.0 [0.0,1.2,-0.5]

Name of this column: label
Data type: double

 Input training file

 1.0,0.0,1.1,0.1

 0.0,2.0,1.0,-1.0

 0.0,2.0,1.3,1.0

 1.0,0.0,1.2,-0.5

 Input training Dataset<Row> to be generated

46

label features

1.0 [0.0,1.1,0.1]

0.0 [2.0,1.0,-1.0]

0.0 [2.0,1.3,1.0]

1.0 [0.0,1.2,-0.5]

Name of this column: features
Data type: org.apache.spark.ml.linalg.Vector

 The file containing the unlabeled data has the
same format of the training data file
 However, the first column is empty because the class

label is unknown
 We want to predict the class label value of each

unlabeled data by applying the classification
model that has been inferred on the training
data

 The predicted class label value is stored in a new
column, called “prediction” of the returned
Dataset<Row>

47

 Consider the following example input
unlabeled data file
,-1.0,1.5,1.3

,3.0,2.0,-0.1

,0.0,2.2,-1.5
 It contains three unlabeled records/data

points
 Note that the first column is empty (the

content before the first comma is the empty
string)

48

 Also the unlabeled data must be stored into a
Dataset<Row> containing two columns

 label

 features

 A label value is required also for unlabeled data

 Any numerical value can be used

▪ The specified value does not impact on the prediction
because the label column is not used to perform the
prediction

 Usually the value -1.0 is used

49

 Input unlabeled data file

 ,-1.0,1.5,1.3

 ,3.0,2.0,-0.1

 ,0.0,2.2,-1.5

 Input unlabeled data Dataset<Row> to be
generated

50

label features

-1.0 [-1.0,1.5,1.3]

-1.0 [3.0,2.0,-0.1]

-1.o [0.0,2.2,-1.5]

 Input unlabeled data file

 ,-1.0,1.5,1.3

 ,3.0,2.0,-0.1

 ,0.0,2.2,-1.5

 Input unlabeled data Dataset<Row> to be
generated

51

label features

-1.0 [-1.0,1.5,1.3]

-1.0 [3.0,2.0,-0.1]

-1.o [0.0,2.2,-1.5]

A value must be specified also for the
label column.
I arbitrarily set it to -1.0 for all records

 After the application of the classification
model on the unlabeled data, Spark returns a
new Dataset<Row> containing
 The same columns of the input data

 A new column called prediction
▪ For each input unlabeled record, it contains the

predicted class label value

 Also other two columns, associated with the
probabilities of the predictions, are returned
▪ We do not consider them in the following example

52

 Input unlabeled data Dataset<Row>

 Returned Dataset<Row> with the predicted class
label values

 53

label features prediction rawPrediction probability

-1.0 [-1.0,1.5,1.3] 1.0 … …

-1.0 [3.0,2.0,-0.1] 0.0 … …

-1.o [0.0,2.2,-1.5] 1.0 … …

label feature

-1.0 [-1.0,1.5,1.3]

-1.0 [3.0,2.0,-0.1]

-1.o [0.0,2.2,-1.5]

 Input unlabeled data Dataset<Row>

 Returned Dataset<Row> with the predicted class
label values

 54

label features prediction rawPrediction probability

-1.0 [-1.0,1.5,1.3] 1.0 … …

-1.0 [3.0,2.0,-0.1] 0.0 … …

-1.o [0.0,2.2,-1.5] 1.0 … …

label feature

-1.0 [-1.0,1.5,1.3]

-1.0 [3.0,2.0,-0.1]

-1.o [0.0,2.2,-1.5] This column contains the predicted
class label values

package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.*;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.feature.LabeledPoint;

55

public class SparkDriver {
 public static void main(String[] args) {
 String inputFileTraining; String inputFileTest; String outputPath;
 inputFileTraining=args[0];
 inputFileTest=args[1];
 outputPath=args[2];

 // Create a Spark Session object and set the name of the application
 // We use some Spark SQL transformation in this program
 SparkSession ss = SparkSession.builder().
 appName("MLlib - logistic regression").getOrCreate();

 // Create a Java Spark Context from the Spark Session
 // When a Spark Session has already been defined this method
 // is used to create the Java Spark Context
 JavaSparkContext sc = new JavaSparkContext(ss.sparkContext());

56

 // *************************
 // Training step
 // *************************

 // Read training data from a text file
 // Each line has the format: class-label, list of three numerical
 // attribute values.
 // E.g., 1.0,5.8,0.5,1.7
 JavaRDD<String> trainingData=sc.textFile(inputFileTraining);

57

 // Map each input record/data point of the input file to a LabeledPoint
 JavaRDD<LabeledPoint> trainingRDD=trainingData.map(record ->
 {
 String[] fields = record.split(",");
 // Fields of 0 contains the id of the class
 double classLabel = Double.parseDouble(fields[0]);

 // The other three cells of fields contain the (numerical)
 // values of the three predictive attributes
 // Create an array of doubles containing those values
 double[] attributesValues = new double[3];

 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);

58

 // Create a dense vector based on the content of

 // attributesValues
 Vector attrValues= Vectors.dense(attributesValues);

 // Return a LabeledPoint based on the content of
 // the current line
 return new LabeledPoint(classLabel, attrValues);
 });

59

 // Prepare training data.

 // We use LabeledPoint, which is a JavaBean.
 // We use Spark SQL to convert RDDs of JavaBeans
 // into Dataset<Row>. The columns of the Dataset are label
 // and features
 Dataset<Row> training =
 ss.createDataFrame(trainingRDD, LabeledPoint.class).cache();

60

 // Prepare training data.

 // We use LabeledPoint, which is a JavaBean.
 // We use Spark SQL to convert RDDs of JavaBeans
 // into Dataset<Row>. The columns of the Dataset are label
 // and features
 Dataset<Row> training =
 ss.createDataFrame(trainingRDD, LabeledPoint.class).cache();

61

The training data are represented by means of a Dataset<Row> of LabeledPoint.
Each element of this DataFrame has two columns:
-label: the class label
-features: the vector of real values associated with the attributes of the input record

This Dataset is cached because the logistic regression algorithm iterates and applies
multiple actions on it.

 // Create a LogisticRegression object.
 // LogisticRegression is an Estimator that is used to
 // create a classification model based on logistic regression.
 LogisticRegression lr = new LogisticRegression();

 // We can set the values of the parameters of the
 // Logistic Regression algorithm using the setter methods.
 // There is one set method for each parameter
 // For example, we are setting the number of maximum iterations to 10
 // and the regularization parameter. to 0.0.1
 lr.setMaxIter(10);
 lr.setRegParam(0.01);

 // Define the pipeline that is used to create the logistic regression
 // model on the training data
 // In this case the pipeline contains one single stage/step (the model
 // generation step).
 Pipeline pipeline = new Pipeline().setStages(new PipelineStage[] {lr});

62

 // Create a LogisticRegression object.
 // LogisticRegression is an Estimator that is used to
 // create a classification model based on logistic regression.
 LogisticRegression lr = new LogisticRegression();

 // We can set the values of the parameters of the
 // Logistic Regression algorithm using the setter methods.
 // There is one set method for each parameter
 // For example, we are setting the number of maximum iterations to 10
 // and the regularization parameter. to 0.0.1
 lr.setMaxIter(10);
 lr.setRegParam(0.01);

 // Define the pipeline that is used to create the logistic regression
 // model on the training data
 // In this case the pipeline contains one single stage/step (the model
 // generation step).
 Pipeline pipeline = new Pipeline().setStages(new PipelineStage[] {lr});

63

This is the sequence of Transformers and Estimators to apply on the training data.
This simple pipeline contains only the logistic regression estimator

 // Execute the pipeline on the training data to build the
 // classification model
 PipelineModel model = pipeline.fit(training);

 // Now, the classification model can be used to predict the class label
 // of new unlabeled data

64

 // Execute the pipeline on the training data to build the
 // classification model
 PipelineModel model = pipeline.fit(training);

 // Now, the classification model can be used to predict the class label
 // of new unlabeled data

65

Execute the pipeline and train the model

 // *************************
 // Prediction step
 // *************************

 // Read unlabeled data
 // For the unlabeled data only the predictive attributes are available
 // The class label is not available and must be predicted by applying
 // the classification model inferred during the previous phase
 JavaRDD<String> unlabeledData=sc.textFile(inputFileTest);

66

 // Map each unlabeled input record/data point of the input file to
 // a LabeledPoint
 JavaRDD<LabeledPoint> unlabeledRDD=unlabeledData.map(record ->
 {
 String[] fields = record.split(",");

 // The last three cells of fields contain the (numerical) values of the
 // three predictive attributes
 // Create an array of doubles containing those three values
 double[] attributesValues = new double[3];

 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);

67

 // Create a dense vector based in the content of attributesValues
 Vector attrValues= Vectors.dense(attributesValues);

 // The class label in unknown.
 // To create a LabeledPoint a class label value must be specified

 // also for the unlabeled data. I set it to -1 (an invalid value).
 // The specified value does not impact on the prediction because

 // the label column is not used to perform the prediction
 double classLabel = -1;

 // Return a new LabeledPoint
 return new LabeledPoint(classLabel, attrValues);
 });

 // Create the DataFrame based on the new test data
 Dataset<Row> test =
 ss.createDataFrame(unlabeledRDD, LabeledPoint.class);

68

 // Make predictions on test documents using the transform()
 // method.
 // The transform will only use the 'features' columns
 Dataset<Row> predictions = model.transform(test);

 // The returned Dataset<Row> has the following schema (attributes)
 // - features: vector (values of the attributes)
 // - label: double (value of the class label)
 // - rawPrediction: vector (nullable = true)
 // - probability: vector (The i-th cell contains the probability that the
 // current record belongs to the i-th class
 // - prediction: double (the predicted class label)

 // Select only the features (i.e., the value of the attributes) and
 // the predicted class for each record
 Dataset<Row> predictionsDF=predictions.select("features", "prediction");

69

 // Make predictions on test documents using the transform()
 // method.
 // The transform will only use the 'features' columns
 Dataset<Row> predictions = model.transform(test);

 // The returned Dataset<Row> has the following schema (attributes)
 // - features: vector (values of the attributes)
 // - label: double (value of the class label)
 // - rawPrediction: vector (nullable = true)
 // - probability: vector (The i-th cell contains the probability that the
 // current record belongs to the i-th class
 // - prediction: double (the predicted class label)

 // Select only the features (i.e., the value of the attributes) and
 // the predicted class for each record
 Dataset<Row> predictionsDF=predictions.select("features", "prediction");

70

The model is applied to new data/records and the class label is predicted
for each new data/record.
The new generated Dataset<Row> has the same attributes of the input
Dataset<Row> and the prediction attribute (and also some other related attributes).

 // Make predictions on test documents using the transform()
 // method.
 // The transform will only use the 'features' columns
 Dataset<Row> predictions = model.transform(test);

 // The returned Dataset<Row> has the following schema (attributes)
 // - features: vector (values of the attributes)
 // - label: double (value of the class label)
 // - rawPrediction: vector (nullable = true)
 // - probability: vector (The i-th cell contains the probability that the
 // current record belongs to the i-th class
 // - prediction: double (the predicted class label)

 // Select only the features (i.e., the value of the attributes) and
 // the predicted class for each record
 Dataset<Row> predictionsDF=predictions.select("features", "prediction");

71

The predictive attributes and the predicted class are selected

 // Save the result in an HDFS file

 JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD();
 predictionsRDD.saveAsTextFile(outputPath);

 // Close the Spark Context object
 sc.close();
 }
}

72

 The following slides show how to

 Create a classification model based on the
decision tree algorithm

▪ The model is inferred by analyzing the training data, i.e.,
the example records/data points for which the value of
the class label is known

 Apply the model to new unlabeled data

▪ The inferred model is applied to predict the value of the
class label of new unlabeled records/data points

74

 The same example structured data already
used in the running example related to the
logistic regression algorithm are used also in
this example related to the decision tree
algorithm

75

 In the following example, the input training data
is stored in a text file that contains
 One record/data point per line

 The records/data points are structured data with a
fixed number of attributes (four)
▪ One attribute is the class label

▪ We suppose that the first column of each record contains the class
label

▪ The other three attributes are the predictive attributes that
are used to predict the value of the class label

 The input file has not the header line

76

 Also in this case the training data must be
represented by means of a Dataset<Row>
characterized by two columns:
 label
 features

 The code that is used to solve this problem is
similar to the one we used to build a logistic
regression model
 The only difference is given by the use of the Decision

Tree algorithm instead of the Logistic regression one
in the defined Pipeline

77

 Input training file

 1.0,0.0,1.1,0.1

 0.0,2.0,1.0,-1.0

 0.0,2.0,1.3,1.0

 1.0,0.0,1.2,-0.5

 Input training Dataset<Row> to be generated

78

label features

1.0 [0.0,1.1,0.1]

0.0 [2.0,1.0,-1.0]

0.0 [2.0,1.3,1.0]

1.0 [0.0,1.2,-0.5]

 The file containing the unlabeled data has
the same format of the training data file

 However, the first column is empty because the
class label is unknown

 We want to predict the class label value of
each unlabeled data by applying the
classification model that has been inferred on
the training data

79

 Input unlabeled data file

 ,-1.0,1.5,1.3

 ,3.0,2.0,-0.1

 ,0.0,2.2,-1.5

 Input unlabeled data Dataset<Row> to be
generated

80

label features

-1.0 [-1.0,1.5,1.3]

-1.0 [3.0,2.0,-0.1]

-1.o [0.0,2.2,-1.5]

 After the application of the classification
model on the unlabeled data, Spark returns a
new Dataset<Row> containing
 The same columns of the input data

 A new column called prediction
▪ For each input unlabeled record, it contains the

predicted class label value

 Also other columns, associated with the
probabilities of the predictions, are returned
▪ We do not consider them in the following example

81

 Input unlabeled data Dataset<Row>

 Returned Dataset<Row> with the predicted class
label values

 82

label features prediction rawPrediction probability

-1.0 [-1.0,1.5,1.3] 1.0 … …

-1.0 [3.0,2.0,-0.1] 0.0 … …

-1.o [0.0,2.2,-1.5] 1.0 … …

label feature

-1.0 [-1.0,1.5,1.3]

-1.0 [3.0,2.0,-0.1]

-1.o [0.0,2.2,-1.5]

package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.*;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.DecisionTreeClassifier;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.feature.LabeledPoint;

83

public class SparkDriver {
 public static void main(String[] args) {
 String inputFileTraining; String inputFileTest; String outputPath;
 inputFileTraining=args[0];
 inputFileTest=args[1];
 outputPath=args[2];

 // Create a Spark Session object and set the name of the application
 // We use some Spark SQL transformation in this program
 SparkSession ss = SparkSession.builder().
 .appName("MLlib - Decision Tree").getOrCreate();

 // Create a Java Spark Context from the Spark Session
 // When a Spark Session has already been defined this method
 // is used to create the Java Spark Context
 JavaSparkContext sc = new JavaSparkContext(ss.sparkContext());

84

 // *************************
 // Training step
 // *************************

 // Read training data from a text file
 // Each line has the format: class-label, list of three numerical
 // attribute values.
 // E.g., 1.0,5.8,0.5,1.7
 JavaRDD<String> trainingData=sc.textFile(inputFileTraining);

85

 // Map each input record/data point of the input file to a LabeledPoint
 JavaRDD<LabeledPoint> trainingRDD=trainingData.map(record ->
 {
 String[] fields = record.split(",");
 // Fields of 0 contains the id of the class
 double classLabel = Double.parseDouble(fields[0]);

 // The other three cells of fields contain the (numerical)
 // values of the three predictive attributes
 // Create an array of doubles containing those values
 double[] attributesValues = new double[3];

 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);

86

 // Create a dense vector based on the content of

 // attributesValues
 Vector attrValues= Vectors.dense(attributesValues);

 // Return a LabeledPoint based on the content of
 // the current line
 return new LabeledPoint(classLabel, attrValues);
 });

87

 // Prepare training data.

 // We use LabeledPoint, which is a JavaBean.
 // We use Spark SQL to convert RDDs of JavaBeans
 // into Dataset<Row>. The columns of the Dataset are label
 // and features
 Dataset<Row> training =
 ss.createDataFrame(trainingRDD, LabeledPoint.class).cache();

88

 // Create a DecisionTreeClassifier object.
 // DecisionTreeClassifier is an Estimator that is used to
 // create a classification model based on decision trees.
 // The algorithm infers a model that can be used to predict the value
 // of the label attribute based on content of vector
 // that is stored in the feature attribute
 DecisionTreeClassifier dc= new DecisionTreeClassifier();

 // We can set the values of the parameters of the Decision Tree
 // For example we can set the measure that is used to decide if a
 // node must be split
 // In this case we set gini index
 dc.setImpurity("gini");

 // Define the pipeline that is used to create the logistic regression
 // model on the training data
 // In this case the pipeline contains one single stage/step (the model
 // generation step).
 Pipeline pipeline = new Pipeline().setStages(new PipelineStage[] {dc});

89

 // Create a DecisionTreeClassifier object.
 // DecisionTreeClassifier is an Estimator that is used to
 // create a classification model based on decision trees.
 // The algorithm infers a model that can be used to predict the value
 // of the label attribute based on content of vector
 // that is stored in the feature attribute
 DecisionTreeClassifier dc= new DecisionTreeClassifier();

 // We can set the values of the parameters of the Decision Tree
 // For example we can set the measure that is used to decide if a
 // node must be split
 // In this case we set gini index
 dc.setImpurity("gini");

 // Define the pipeline that is used to create the logistic regression
 // model on the training data
 // In this case the pipeline contains one single stage/step (the model
 // generation step).
 Pipeline pipeline = new Pipeline().setStages(new PipelineStage[] {dc});

90

We use a Decision Tree Classifier in this application.

 // Execute the pipeline on the training data to build the
 // classification model
 PipelineModel model = pipeline.fit(training);

 // Now, the classification model can be used to predict the class label
 // of new unlabeled data

91

 // *************************
 // Prediction step
 // *************************

 // Read unlabeled data
 // For the unlabeled data only the predictive attributes are available
 // The class label is not available and must be predicted by applying
 // the classification model inferred during the previous phase
 JavaRDD<String> unlabeledData=sc.textFile(inputFileTest);

92

 // Map each unlabeled input record/data point of the input file to
 // a LabeledPoint
 JavaRDD<LabeledPoint> unlabeledRDD=unlabeledData.map(record ->
 {
 String[] fields = record.split(",");

 // The last three cells of fields contain the (numerical) values of the
 // three predictive attributes
 // Create an array of doubles containing those three values
 double[] attributesValues = new double[3];

 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);

93

 // Create a dense vector based in the content of attributesValues
 Vector attrValues= Vectors.dense(attributesValues);

 // The class label in unknown.
 // To create a LabeledPoint a class label value must be specified

 // also for the unlabeled data. I set it to -1 (an invalid value).
 // The specified value does not impact on the prediction because

 // the label column is not used to perform the prediction
 double classLabel = -1;

 // Return a new LabeledPoint
 return new LabeledPoint(classLabel, attrValues);
 });

 // Create the DataFrame based on the new test data
 Dataset<Row> test =
 ss.createDataFrame(unlabeledRDD, LabeledPoint.class);

94

 // Make predictions on test documents using the transform()
 // method.
 // The transform will only use the 'features' columns
 Dataset<Row> predictions = model.transform(test);

 // The returned Dataset<Row> has the following schema (attributes)
 // - features: vector (values of the attributes)
 // - label: double (value of the class label)
 // - rawPrediction: vector (nullable = true)
 // - probability: vector (The i-th cell contains the probability that the
 // current record belongs to the i-th class
 // - prediction: double (the predicted class label)

 // Select only the features (i.e., the value of the attributes) and
 // the predicted class for each record
 Dataset<Row> predictionsDF=predictions.select("features", "prediction");

95

 // Save the result in an HDFS file

 JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD();
 predictionsRDD.saveAsTextFile(outputPath);

 // Close the Spark Context object
 sc.close();
 }
}

96

 Frequently the class label is a categorical
value (i.e., a string)

 As reported before, Spark MLlib works only
with numerical values and hence categorical
class label values must be mapped to integer
(and then double) values

98

 Input training data

 Input Dataset<Row> that must be generated as
input for the MLlib classification algorithms

99

label features

1.0 [0.0, 1.1, 0.1]

0.0 [2.0, 1.0, -1.0]

0.0 [2.0, 1.3, 1.0]

categoricalLabel Attr1 Attr2 Attr3

Positive 0.0 1.1 0.1

Negative 2.0 1.0 -1.0

Negative 2.0 1.3 1.0

 Input training data

 Input Dataset<Row> that must be generated as
input for the MLlib classification algorithms

100

label features

1.0 [0.0, 1.1, 0.1]

0.0 [2.0, 1.0, -1.0]

0.0 [2.0, 1.3, 1.0]

categoricalLabel Attr1 Attr2 Attr3

Positive 0.0 1.1 0.1

Negative 2.0 1.0 -1.0

Negative 2.0 1.3 1.0

The categorical values of categoricalLabel (the class label column) must
be mapped to integer values (finally casted to doubles)

 The Estimators StringIndexer and
IndexToString support the transformation of
categorical class label into numerical one

 StringIndexer maps each categorical value of the
class label to an integer (finally casted to a double)

 IndexToString is used to perform the opposite
operation

101

 Main steps
1. Use StringIndexer to extend the input DataFrame

with a new column, called “label”, containing the
numerical representation of the class label column

2. Create a column, called “features”, of type vector
containing the predictive features

3. Infer a classification model by using a classification
algorithm (e.g., Decision Tree, Logistic regression)

▪ The model is built by considering only the values of
features and label. All the other columns are not considered
by the classification algorithm during the generation of the
prediction model

102

4. Apply the model on a set of unlabeled data to
predict their numerical class label

5. Use IndexToString to convert the predicted
numerical class label values to the original
categorical values

103

 Input training file

 Positive,0.0,1.1,0.1

 Negative,2.0,1.0,-1.0

 Negative,2.0,1.3,1.0

 Initial training Dataset<Row>

104

categoricalLabel

features

Positive [0.0, 1.1, 0.1]

Negative [2.0, 1.0, -1.0]

Negative [2.0, 1.3, 1.0]

 Input training file

 Positive,0.0,1.1,0.1

 Negative,2.0,1.0,-1.0

 Negative,2.0,1.3,1.0

 Initial training Dataset<Row>

105

categoricalLabel

features

Positive [0.0, 1.1, 0.1]

Negative [2.0, 1.0, -1.0]

Negative [2.0, 1.3, 1.0]

String

Vector

 Initial training Dataset<Row>

 Training Dataset<Row> after StringIndexer

106

categoricalLabel

features label

Positive [0.0, 1.1, 0.1] 1.0

Negative [2.0, 1.0, -1.0] 0.0

Negative [2.0, 1.3, 1.0] 0.0

categoricalLabel

features

Positive [0.0, 1.1, 0.1]

Negative [2.0, 1.0, -1.0]

Negative [2.0, 1.3, 1.0]

 Initial training Dataset<Row>

 Training Dataset<Row> after StringIndexer

107

categoricalLabel

features label

Positive [0.0, 1.1, 0.1] 1.0

Negative [2.0, 1.0, -1.0] 0.0

Negative [2.0, 1.3, 1.0] 0.0

categoricalLabel

features

Positive [0.0, 1.1, 0.1]

Negative [2.0, 1.0, -1.0]

Negative [2.0, 1.3, 1.0]

Mapping generated
by StringIndexer:
-“Positive”: 1.o
-“Negative”: 0.0

 Input unlabeled data file

 ,-1.0,1.5,1.3

 ,3.0,2.0,-0.1

 ,0.0,2.2,-1.5

 Initial unlabeled data Dataset<Row>

108

categoricalLabel

features

Positive [-1.0, 1.5, 1.3]

Positive [3.0, 2.0, -0.1]

Positive [0.0, 2.2, -1.5]

 Input unlabeled data file

 ,-1.0,1.5,1.3

 ,3.0,2.0,-0.1

 ,0.0,2.2,-1.5

 Initial unlabeled data Dataset<Row>

109

categoricalLabel

features

Positive [-1.0, 1.5, 1.3]

Positive [3.0, 2.0, -0.1]

Positive [0.0, 2.2, -1.5]

The categoricalLabel attribute must be set
to a valid value also for the unlabeled data
otherwise the StringIndexer component of
the Pipeline raises and an error.
Select the class label value that you prefer.
It does not impact on the predicted class
label value.

 Initial unlabeled data Dataset<Row>

 Dataset<Row> after prediction + IndexToString

110

categoricalLabel

features

Positive [-1.0, 1.5, 1.3]

Positive [3.0, 2.0, -0.1]

Positive [0.0, 2.2, -1.5]

categoricalLabel

features label prediction predictedLabel …

… [-1.0, 1.5, 1.3] … 1.0 Positive

… [3.0, 2.0, -0.1] … 0.0 Negative

… [0.0, 2.2, -1.5] … 1.0 Positive

 Initial unlabeled data Dataset<Row>

 Dataset<Row> after prediction + IndexToString

111

categoricalLabel

features label prediction predictedLabel …

… [-1.0, 1.5, 1.3] … 1.0 Positive

… [3.0, 2.0, -0.1] … 0.0 Negative

… [0.0, 2.2, -1.5] … 1.0 Positive

categoricalLabel

features

Positive [-1.0, 1.5, 1.3]

Positive [3.0, 2.0, -0.1]

Positive [0.0, 2.2, -1.5]
Predicted label:
numerical version

Predicted label:
categorical/original version

 In the following example, the input training
data is stored in a text file that contains
 One record/data point per line

 The records/data points are structured data with a
fixed number of attributes (four)
▪ One attribute is the class label

▪ Categorical attribute assuming two values: Positive, Negative

▪ The other three attributes are the predictive attributes
that are used to predict the value of the class label

 The input file has not the header line

112

 The file containing the unlabeled data has
the same format of the training data file

 However, the first column is empty because the
class label is unknown

 We want to predict the class label value of
each unlabeled data by applying the
classification model that has been inferred on
the training data

113

package it.polito.bigdata.spark.sparkmllib;

import java.io.Serializable;
import org.apache.spark.ml.linalg.Vector;

@SuppressWarnings("serial")
public class MyLabeledPoint implements Serializable {

 private String categoricalLabel;
 private Vector features;

 public MyLabeledPoint(String categoricalLabel, Vector features) {
 this.categoricalLabel = categoricalLabel;
 this.features = features;
 }

 public String getCategoricalLabel() {
 return categoricalLabel;
 }

114

 public Vector getFeatures() {
 return features;
 }

 public void setFeatures(Vector features) {
 this.features = features;
 }
}

115

package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.*;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.DecisionTreeClassifier;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.feature.IndexToString;
import org.apache.spark.ml.feature.StringIndexer;
import org.apache.spark.ml.feature.StringIndexerModel;

116

public class SparkDriver {
 public static void main(String[] args) {
 String inputFileTraining; String inputFileTest; String outputPath;
 inputFileTraining=args[0];
 inputFileTest=args[1];
 outputPath=args[2];

 // Create a Spark Session object and set the name of the application
 // We use some Spark SQL transformation in this program
 SparkSession ss = SparkSession.builder().
 .appName("MLlib - Decision Tree - Categorical label").getOrCreate();

 // Create a Java Spark Context from the Spark Session
 // When a Spark Session has already been defined this method
 // is used to create the Java Spark Context
 JavaSparkContext sc = new JavaSparkContext(ss.sparkContext());

117

 // *************************
 // Training step
 // *************************

 // Read training data from a textual file
 // Each lines has the format: class-label,list of numerical attribute values
 // The class label is a String
 // E.g., Positive,1.0,5.0,4.5,1.2
 JavaRDD<String> trainingData=sc.textFile(inputFileTraining);

118

// Map each input record/data point of the input file to a MyLabeledPoint object
// MyLabeledPoint is a class that I defined to store the information about
// records/data points with class label of type String
 JavaRDD<MyLabeledPoint> trainingRDD=trainingData.map(record ->
 {
 String[] fields = record.split(",");
 // Fields of 0 contains the id of the class
 String classLabel = fields[0];

 // The other three cells of fields contain the values of the
 // three predictive attributes
 // Create an array of doubles containing those values
 double[] attributesValues = new double[3];

 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);
 119

 // Create a dense vector based on the content of
 // attributesValues
 Vector attrValues= Vectors.dense(attributesValues);

 // Return a LabeledPoint based on the content of the
 // current line
 return new MyLabeledPoint(classLabel, attrValues);
 });

120

 // Prepare training data.
 // We use MyLabeledPoint, which is a JavaBean.
 // We use Spark SQL to convert RDDs of JavaBeans
 // into DataFrames.
 // Each data point has a set of features and a label
 Dataset<Row> training =
 ss.createDataFrame(trainingRDD, MyLabeledPoint.class).cache();

121

 // The StringIndexer Estimator is used to map each class label
 // value to an integer value (casted to a double).
 // A new attribute called label is generated by applying
 // transforming the content of the categoricalLabel attribute.
 StringIndexerModel labelIndexer = new StringIndexer()
 .setInputCol("categoricalLabel")
 .setOutputCol("label")
 .fit(training);

122

 // The StringIndexer Estimator is used to map each class label
 // value to an integer value (casted to a double).
 // A new attribute called label is generated by applying
 // transforming the content of the categoricalLabel attribute.
 StringIndexerModel labelIndexer = new StringIndexer()
 .setInputCol("categoricalLabel")
 .setOutputCol("label")
 .fit(training);

123

This StringIndexer component is used to
map the categorical values of column
“categoricalLabel” to a set of integer
values stored in the new column called
“label”

 // Create a DecisionTreeClassifier object.
 // DecisionTreeClassifier is an Estimator that is used to create a
 // classification model based on decision trees
 // By default, the MLlib decision tree algorithm considers only the content
 // of the features attribute to predict the value of the label attribute.
 // The other attributes are not considered during the generation of the
 // model (i.e., in this case the value of categoricalLabel is not considered by
 // the MLlib decision tree algorithm).
 DecisionTreeClassifier dc= new DecisionTreeClassifier();

 // We can set the values of the parameters of the
 // Decision Tree.
 // For example we can set the measure that is used to decide if a
 // node must be split.
 // In this case we set it to the gini index
 dc.setImpurity("gini");

124

 // At the end of the pipeline we must convert indexed labels back
 // to original labels (from numerical to string).
 // The content of the prediction attribute is the index of the predicted class
 // The original name of the predicted class is stored in the predictedLabel
 // attribute.
 // IndexToString creates a new column (called predictedLabel in
 // this example) that is based on the content of the prediction column.

 // prediction is a double while predictedLabel is a string
 IndexToString labelConverter = new IndexToString()
 .setInputCol("prediction")
 .setOutputCol("predictedLabel")
 .setLabels(labelIndexer.labels());

125

 // At the end of the pipeline we must convert indexed labels back
 // to original labels (from numerical to string).
 // The content of the prediction attribute is the index of the predicted class
 // The original name of the predicted class is stored in the predictedLabel
 // attribute.
 // IndexToString creates a new column (called predictedLabel in
 // this example) that is based on the content of the prediction column.

 // prediction is a double while predictedLabel is a string
 IndexToString labelConverter = new IndexToString()
 .setInputCol("prediction")
 .setOutputCol("predictedLabel")
 .setLabels(labelIndexer.labels());

126

This IndexToString component is used to remap the
numerical predictions available in the “prediction”
column to the original categorical values that are stored
in the new column called “predictedLabel”

 // Define the pipeline that is used to create the decision tree
 // model on the training data.
 // In this case the pipeline contains the following steps:
 // - Create a new column, called label, containing the numerical
 // representation of the original column
 // - Run the decision tree algorithm to infer a classification model
 // - Convert the numerical predicted class label values into the original
 // categorical values (strings)
 Pipeline pipeline = new Pipeline()
 .setStages(new PipelineStage[] {labelIndexer,dc,labelConverter});

 // Execute the pipeline on the training data to build the
 // classification model
 PipelineModel model = pipeline.fit(training);

 // Now, the classification model can be used to predict the class label
 // of new unlabeled data

127

 // Define the pipeline that is used to create the decision tree
 // model on the training data.
 // In this case the pipeline contains the following steps:
 // - Create a new column, called label, containing the numerical
 // representation of the original column
 // - Run the decision tree algorithm to infer a classification model
 // - Convert the numerical predicted class label values into the original
 // categorical values (strings)
 Pipeline pipeline = new Pipeline()
 .setStages(new PipelineStage[] {labelIndexer,dc,labelConverter});

 // Execute the pipeline on the training data to build the
 // classification model
 PipelineModel model = pipeline.fit(training);

 // Now, the classification model can be used to predict the class label
 // of new unlabeled data

128

This Pipeline is composed of three steps

 // *************************
 // Prediction step
 // *************************

 // Read unlabeled data
 // For the unlabeled data only the predictive attributes are available
 // The class label is not available and must be predicted by applying
 // the classification model inferred during the previous phase
 JavaRDD<String> unlabeledData=sc.textFile(inputFileTest);

129

 // Map each unlabeled input record/data point of the input file to
 // a MyLabeledPoint
 JavaRDD<MyLabeledPoint> unlabeledRDD=unlabeledData.map(record ->
 {
 String[] fields = record.split(",");

 // The last three cells of fields contain the (numerical) values of the
 // three predictive attributes
 // Create an array of doubles containing those three values
 double[] attributesValues = new double[3];

 attributesValues[0] = Double.parseDouble(fields[1]);
 attributesValues[1] = Double.parseDouble(fields[2]);
 attributesValues[2] = Double.parseDouble(fields[3]);

 // Create a dense vector based in the content of attributesValues
 Vector attrValues= Vectors.dense(attributesValues);

130

 // The class label in unknown.
 // To create a MyLabeledPoint a categoricalLabel value must be

 // specified also for the unlabeled data.
 // I set it to "Positive" (we must set the value of the class label to
 // a valid value otherwise IndexToString raises an error).
 // The specified value does not impact on the prediction because
 // the categoricalLabel column is not used to perform the
 // prediction.
 String classLabel = new String("Positive");

 // Return a new LabeledPoint
 return new MyLabeledPoint(classLabel, attrValues);
 });

 // Create the DataFrame based on the new test data
 Dataset<Row> unlabeled =
 ss.createDataFrame(unlabeledRDD, MyLabeledPoint.class);

131

 // Make predictions on test documents using the transform()
 // method.
 // The transform will only use the 'features' columns
 Dataset<Row> predictions = model.transform(unlabeled);

 // The returned DataFrame has the following schema (attributes)
 // - features: vector (values of the attributes)
 // - label: double (value of the class label)
 // - rawPrediction: vector (nullable = true)
 // - probability: vector (The i-th cell contains the probability that the
 // current record belongs to the i-th class
 // - prediction: double (the predicted class label)
 // - predictedLabel: string (nullable = true)

 // Select only the features (i.e., the value of the attributes) and
 // the predicted class for each record (the categorical version)
 Dataset<Row> predictionsDF=
 predictions.select("features", "predictedLabel");

132

 // Make predictions on test documents using the transform()
 // method.
 // The transform will only use the 'features' columns
 Dataset<Row> predictions = model.transform(unlabeled);

 // The returned DataFrame has the following schema (attributes)
 // - features: vector (values of the attributes)
 // - label: double (value of the class label)
 // - rawPrediction: vector (nullable = true)
 // - probability: vector (The i-th cell contains the probability that the
 // current record belongs to the i-th class
 // - prediction: double (the predicted class label)
 // - predictedLabel: string (nullable = true)

 // Select only the features (i.e., the value of the attributes) and
 // the predicted class for each record (the categorical version)
 Dataset<Row> predictionsDF=
 predictions.select("features", "predictedLabel");

133

“predictedLabel” is the column containing
the predicted categorical class label for the
unlabeled data

 // Save the result in an HDFS file

 JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD();
 predictionsRDD.saveAsTextFile(outputPath);

 // Close the Spark Context object
 sc.close();
 }
}

134

135

 Frequently the training data are sparse

 E.g., textual data are sparse

▪ Each document contains only a subset of the possible
words

 Hence, sparse vectors are frequently used

 MLlib supports reading training examples
stored in the LIBSVM format

 It is a commonly used textual format that is used
to represent sparse documents/data points

136

 The LIBSVM format
 It is a textual format in which each line represents a

labeled point by using a sparse feature vector:
 Each line has the format
 label index1:value1 index2:value2 ...
 where
 label is an integer associated with the class label

▪ It is the first value of each line

 The indexes are integer values representing the
features

 The values are the (double) values of the features

137

 Consider the following two records/data
points characterized by 4 predictive features
and a class label

 Features = [5.8, 1.7, 0 , 0] -- Label = 1

 Features = [4.1, 0 , 2.5, 1.2] -- Label = 0

 Their LIBSVM format-based representation is
the following

 1 1:5.8 2:1.7

 0 1:4.1 3:2.5 4:1.2

138

 LIBSVM files can be loaded into Dataset<Row>
by combining the following methods:

 read(), format("libsvm"), and load(String inputpath)

 The returned Dataset<Row> (i.e., DataFrame)
has two columns:

 label: double

▪ The double value associated with the label

 features: vector

▪ A sparse vector associated with the predictive features

139

…
SparkSession ss = parkSession.builder()
 .appName("Test read LIBSMV file").getOrCreate();

Dataset<Row> data = ss.read().format("libsvm")
 .load("sample_libsvm_data.txt");

..

140

