Big data: architectures and
data analytics

Spark MLIib

Textual data classification

Textual data classification

The following slides show how to

Create a classification model based on the logistic
regression algorithm for textval documents

Apply the model to new textual documents
The input training dataset represents a
textual document collection

Each line contains one document and its class

The class label
A list of words (the text of the document)

Textual data classification

Consider the following example file
1,The Spark system is based on scala
1,Spark is a new distributed system
o,Turin is a beautiful city

o,Turinis in the north of Italy
It contains four textual documents
Each line contains two attributes

The class label (first attribute)
The text of the document (second attribute)

Textual data classification

Input data before pre-processing

1 The Spark system is based on scala
1 Spark is a new distributed system
0 Turinis a beautiful city

o Turinis in the north of Italy

Textual data classification

A set of preprocessing steps must be applied
on the textual attribute before generating a
classification model

Textual data classification

Since Spark ML algorithms work only on
"Tables”, the textual part of the input data
must be translated in a set of attributesin
order to represent the data as a table

Usually a table with an attribute for each word is
generated

Textual data classification

Many words are useless (e.qg., conjunctions)
Stopwords are usually removed

Textual data classification

The words appearing in almost all documents
are not characterizing the data
Hence, they are not very important for the
classification problem
The words appearing in few documents allow
distinguish the content of those documents
(and hence the class label) with respect to the
others

Hence, they are very important for the
classification problem

Textual data classification

Traditionally a weight, based on the TF-IDF
measure, is used to assign a difference
importance to the words based on their
frequency in the collection

Textual data classification

Input data after the pre-processing
transformations (tokenization, stopword
removal, TF-IDF computation)

1 0.5 0.3 0.75
1 0.5 0.3 o
0 0 0 0
o 0 0 0

Textual data classification

The Dataset<Row> associated with input
data after the pre-processing transformations
must contain, as usual, the columns
label
Class label value
features
The pre-processed version of the input text

There are also some other intermediate columns,
related to applied transformations, but they are
not considered by the classification algorithm

13

Textual data classification

The Dataset<Row> associated with input
data after the pre-processing transformations
must contain, as usual, the columns

1 [0.5, 0.3, 0.75, ..]
1 [0.5,0.3,0, ..]

0 [0, 0,0, ..]

0 [0, 0,0, ..]

The Spark system is based on scala
Spark is a new distributed system
Turinis a beautiful city

Turinis in the north of Italy

14

Textual data classification

The Dataset<Row> associated with input
data after the pre-processing transformations
must contain, as usual, the columns

1 [0.5, 0.3, 0.75, ..]
1 [0.5,0.3,0, ..]

0 [0, 0,0, ..]

0 [0, 0,0, ..]

T~

The Spark system is based on scala
Spark is a new distributed system
Turinis a beautiful city

Turinis in the north of Italy

Only “label” and “features” are considered by the
classification algorithm

15

Textual data classification: example

package it.polito.bigdata.spark.sparkmllib;
import java.io.Serializable;

public class LabeledDocument implements Serializable §
private double label;
private String text;

public LabeledDocument(double label, String text) §
this.text = text;
this.label = label;

}

16

Textual data classification: example

public String getText() { return this.text; }
public void setText(String text) { this.text = text; }

public double getLabel() { return this.label; }
public void setLabel(double label) { this.label = label; }

17

Textual data classification: example

package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.*;

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;

import org.apache.spark.sql.SparkSession;

import org.apache.spark.ml.Pipeline;

import org.apache.spark.ml.PipelineModel;

import org.apache.spark.ml.PipelineStage;

import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.feature.Tokenizer;

import org.apache.spark.ml.feature.HashingTF;

import org.apache.spark.ml.feature.IDF;

import org.apache.spark.ml.feature.StopWordsRemover;

18

Textual data classification: example

public static void main(String[] args) {
String inputFileTraining; String inputFileTest; String outputPath;

inputFileTraining=args[o];
inputFileTest=args[1];
outputPath=args[2];

// Create a Spark Session object and set the name of the application
// We use some Spark SQL transformation in this program
SparkSession ss = SparkSession.builder()

.appName("MLIib - logistic regression").getOrCreate();

// Create a Java Spark Context from the Spark Session

// When a Spark Session has already been defined this method

/[is used to create the Java Spark Context

JavaSparkContext sc = new JavaSparkContext(ss.sparkContext());

Textual data classification: example

//*************************

/[Training step

//*************************

// Read training data from a textual file

/] Each lines has the format: class-label, list of words

// E.g., 1,hadoop mapreduce

JavaRDD<String> trainingData=sc.textFile(inputFileTraining);

20

Textual data classification: example

/| Map each element (each line of the input file) to a LabeledDocument

/| LabeledDocument is a class defined in this application. Each instance

/| of LabeledDocument is characterized by two attributes:

/[- private double label

/[- private String text

/| LabeledDocument represents a "document" and the related class label.
JavaRDD<LabeledDocument> trainingRDD=trainingData.map(record -> {

String[] fields = record.split(",");

// fields[o] contains the class label
double classLabel = Double.parseDouble(fields[o]);

/| The content of the document is after the comma
String text = fields[1];

/| Return a new LabeledDocument

return new LabeledDocument(classLabel, text);

21

Textual data classification: example

/| Prepare training data.
/[We use LabeledDocument, which is a JavaBean.
/| We use Spark SQL to convert RDDs of JavaBeans
/] into Dataset<Row>. The columns of the Dataset are label
/[and features
Dataset<Row> training = ss
.createDataFrame(trainingRDD, LabeledDocument.class).cache();

22

Textual data classification: example

// Configure an ML pipeline, which consists of five stages:

// tokenizer -> split sentences in set of words

/| remover ->remove stopwords

// hashingTF -> map set of words to a fixed-length feature vectors (each
// word becomes a feature and the value of the feature is the frequency of
/| the word in the sentence)

// idf -> compute the idf component of the TF-IDF measure

// Ir -> logistic regression classification algorithm

// The Tokenizer splits each sentence in a set of words.
// It analyzes the content of column "text" and adds the
/[new column "words" in the returned DataFrame
Tokenizer tokenizer = new Tokenizer()
setlnputCol("text")
.setOutputCol("words");

23

Textual data classification: example

/| Remove stopwords.
/| the StopWordsRemover component returns a new DataFrame with
// new column called "filteredWords". "filteredWords" is generated
// by removing the stopwords from the content of column "words"
StopWordsRemover remover = new StopWordsRemover()
.setlnputCol("words")
.setOutputCol("filteredWords");

24

Textual data classification: example

// Map words to a features
/| Each word in filteredWords must become a feature in a Vector object
// The HashingTF Transformer performs this operation.
// This operations is based on a hash function and can potentially
// map two different words to the same "feature". The number of conflicts
/[ininfluenced by the value of the numFeatures parameter.
/| The "feature" version of the words is stored in Column "rawFeatures".
/| Each feature, for a document, contains the number of occurrences
/| of that feature in the document (TF component of the TF-IDF measure)
HashingTF hashingTF = new HashingTF()
.setNumFeatures(1000)
.setlnputCol("filteredWords")
.setOutputCol("rawFeatures");

25

Textual data classification: example

// Apply the IDF transformation.
// Update the weight associated with each feature by considering also the
/[inverse document frequency component. The returned new column
[[is called "features", that is the standard name for the column that
/| contains the predictive features used to create a classification model
IDF idf = new IDF()

.setlnputCol("rawFeatures")

.setOutputCol("features");

26

Textual data classification: example

// Create a classification model based on the logistic regression algorithm
// We can set the values of the parameters of the
// Logistic Regression algorithm using the setter methods.
LogisticRegression Ir = new LogisticRegression()

.setMaxlter(10)

.setRegParam(o.01);

/| Define the pipeline that is used to create the logistic regression
// model on the training data.
/[In this case the pipeline is composed of five steps
/[- text tokenizer
/[- stopword removal
/[- TF-IDF computation (performed in two steps)
/[- Logistic regression model generation
Pipeline pipeline = new Pipeline()
.setStages(new PipelineStage[] {tokenizer, remover, hashingTF, idf, Ir});

27

Textual data classification: example

/| Execute the pipeline on the training data to build the
// classification model
PipelineModel model = pipeline.fit(training);

// Now, the classification model can be used to predict the class label
/| of new unlabeled data

28

Textual data classification: example

//*************************

// Prediction step
//*************************

// Read unlabeled data

/| For the unlabeled data only the predictive attributes are available
// The class label is not available and must be predicted by applying
// the classification model inferred during the previous phase
JavaRDD<String> unlabeledData=sc.textFile(inputFileTest);

29

Textual data classification: example

// Map each unlabeled input document of the input file to a
LabeledDocument JavaRDD<LabeledDocument> unlabeledRDD=
unlabeledData.map(record -> §

String[]fields = record.split(",");
/| The content of the document is after the comma
String text = fields[1];

/I The class label in unknown.

/| To create a LabeledDocument a class label value must be

/[specified also for the unlabeled data. I set it to -1 (an invalid
/[value).

double classLabel = -1;

/[Return a new LabeledDocument
return new LabeledDocument(classLabel, text);

30

Textual data classification: example

/| Create the DataFrame based on the new unlabeled data
Dataset<Row> unlabeled =

ss.createDataFrame(unlabeledRDD, LabeledDocument.class);

/| Make predictions on unlabeled documents by using the

/| Transformer.transform() method.

// The transform will only use the 'features' columns

// The returned DataFrame has the following schema (attributes)

Il -
Il -
Il -
Il -

Il

Il -

features: vector (values of the attributes)

label: double (value of the class label)

rawPrediction: vector (nullable = true)

probability: vector (The i-th cell contains the probability that the
current record belongs to the i-th class

prediction: double (the predicted class label)

Dataset<Row> predictions = model.transform(unlabeled);

31

Textual data classification: example

/| Select only the text and
// the predicted class for each record/document
Dataset<Row> predictionsDF=predictions.select("text", "prediction");

/| Save the result in an HDFS file
JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD();
predictionsRDD.saveAsTextFile(outputPath);

// Close the Spark Context object
sc.close();

32

