






 The following slides show how to 

 Create a classification model based on the logistic 
regression algorithm for textual documents 

 Apply the model to new textual documents 

 The input training dataset represents a 
textual document collection 

 Each line contains one document and its class 

▪ The class label 

▪ A list of words (the text of the document) 

4 



 Consider the following example file 
1,The Spark system is based on scala 

1,Spark is a new distributed system 

0,Turin is a beautiful city 

0,Turin is in the north of Italy  
 It contains four textual documents 
 Each line contains two attributes 
 The class label (first attribute) 

 The text of the document (second attribute) 

5 



 Input data before pre-processing 

6 

Label Text 

1 The Spark system is based on scala 

1 Spark is a new distributed system 

0 Turin is a beautiful city 

0 Turin is in the north of Italy  



 A set of preprocessing steps must be applied 
on the textual attribute before generating a 
classification model 
 

7 



1. Since  Spark ML algorithms work only on 
“Tables”, the textual part of the input data 
must be translated in a set of attributes in 
order to represent the data as a table 

 Usually a table with an attribute for each word is 
generated 

 

 

8 



2. Many words are useless (e.g., conjunctions) 

 Stopwords are usually removed  

 

 

 

9 



 The words appearing in almost all documents 
are not characterizing the data 
 Hence, they are not very important for the 

classification problem 
 The words appearing in few documents allow 

distinguish the content of those documents 
(and hence the class label) with respect to the 
others 
 Hence, they are very important for the 

classification problem 

10 



3. Traditionally a weight, based on the TF-IDF 
measure, is used to assign a difference 
importance to the words based on their 
frequency in the collection 

 

11 



 Input data after the pre-processing 
transformations (tokenization, stopword 
removal, TF-IDF computation) 

12 

Label Spark system scala ….. 

1 0.5 0.3 0.75 .. 

1 0.5 0.3 0 … 

0 0 0 0 … 

0 0 0 0 … 



 The Dataset<Row> associated with input 
data after the pre-processing transformations 
must contain, as usual, the columns 
 label 

▪ Class label value 

 features 
▪ The pre-processed version of the input text 

 There are also some other intermediate columns, 
related to applied transformations, but they are 
not considered by the classification algorithm 

13 



 The Dataset<Row> associated with input 
data after the pre-processing transformations 
must contain, as usual, the columns 
 

14 

label features text ….. ….. 

1 [0.5, 0.3, 0.75, ..] The Spark system is based on scala .. .. 

1 [0.5, 0.3, 0, .. ] Spark is a new distributed system … … 

0 [0, 0, 0, ..] Turin is a beautiful city … … 

0 [0, o, o, ..] Turin is in the north of Italy  … … 



 The Dataset<Row> associated with input 
data after the pre-processing transformations 
must contain, as usual, the columns 
 

15 

label features text ….. ….. 

1 [0.5, 0.3, 0.75, ..] The Spark system is based on scala .. .. 

1 [0.5, 0.3, 0, .. ] Spark is a new distributed system … … 

0 [0, 0, 0, ..] Turin is a beautiful city … … 

0 [0, o, o, ..] Turin is in the north of Italy  … … 

Only “label” and “features” are considered by the 
classification algorithm 



package it.polito.bigdata.spark.sparkmllib; 
 
import java.io.Serializable; 
 
public class LabeledDocument implements Serializable { 
   private double label; 
   private String text; 
 
   public LabeledDocument(double label, String text) {  
     this.text = text; 
     this.label = label; 
   } 
 
  

16 



 
   public String getText() { return this.text; } 
   public void setText(String text) { this.text = text; } 
 
   public double getLabel() { return this.label; } 
   public void setLabel(double label) { this.label = label; } 
 } 
); 

17 



package it.polito.bigdata.spark.sparkmllib; 
 
import org.apache.spark.api.java.*; 
import org.apache.spark.sql.Dataset; 
import org.apache.spark.sql.Row; 
import org.apache.spark.sql.SparkSession; 
import org.apache.spark.ml.Pipeline; 
import org.apache.spark.ml.PipelineModel; 
import org.apache.spark.ml.PipelineStage; 
import org.apache.spark.ml.classification.LogisticRegression; 
import org.apache.spark.ml.feature.Tokenizer; 
import org.apache.spark.ml.feature.HashingTF; 
import org.apache.spark.ml.feature.IDF; 
import org.apache.spark.ml.feature.StopWordsRemover; 

18 



 public static void main(String[] args) { 
  String inputFileTraining;  String inputFileTest; String outputPath; 
 
  inputFileTraining=args[0]; 
  inputFileTest=args[1]; 
  outputPath=args[2]; 
  
  // Create a Spark Session object and set the name of the application 
  // We use some Spark SQL transformation in this program 
  SparkSession ss = SparkSession.builder() 
   .appName("MLlib - logistic regression").getOrCreate(); 
 
  // Create a Java Spark Context from the Spark Session 
  // When a Spark Session has already been defined this method  
  // is used to create the Java Spark Context 
  JavaSparkContext sc = new JavaSparkContext(ss.sparkContext()); 

19 



  // ************************* 
  // Training step 
  // ************************* 
 
  // Read training data from a textual file 
  // Each lines has the format: class-label,list of words 
  // E.g., 1,hadoop mapreduce 
  JavaRDD<String> trainingData=sc.textFile(inputFileTraining); 
   

20 



  // Map each element (each line of the input file) to a LabeledDocument 
  // LabeledDocument is a class defined in this application. Each instance  
  // of LabeledDocument is characterized by two attributes: 
  // - private double label 
  //  - private String text 
  // LabeledDocument represents a "document" and the related class label. 
  JavaRDD<LabeledDocument> trainingRDD=trainingData.map(record -> { 
    String[] fields = record.split(","); 
    
    // fields[0] contains the class label 
    double classLabel = Double.parseDouble(fields[0]); 
 
    // The content of the document is after the comma  
    String text = fields[1]; 
    // Return a new LabeledDocument 
    return new LabeledDocument(classLabel, text); 
   }); 

21 



  // Prepare training data. 
  // We use LabeledDocument, which is a JavaBean.   
  // We use Spark SQL to convert RDDs of JavaBeans 
  // into Dataset<Row>. The columns of the Dataset are label 
  // and features 
  Dataset<Row> training = ss 
   .createDataFrame(trainingRDD, LabeledDocument.class).cache(); 

22 



  // Configure an ML pipeline, which consists of five stages:  
  // tokenizer -> split sentences in set of words 
  // remover -> remove stopwords 
  // hashingTF -> map set of words to a fixed-length feature vectors  (each  
  // word becomes a feature and the value of the feature is the frequency of 
  //  the word in the sentence) 
  // idf -> compute the idf component of the TF-IDF measure 
  // lr -> logistic regression classification algorithm 
 
  // The Tokenizer splits each sentence in a set of words. 
  // It analyzes the content of column "text" and adds the  
  // new column "words" in the returned DataFrame 
  Tokenizer tokenizer = new Tokenizer() 
     .setInputCol("text") 
     .setOutputCol("words"); 

23 



  // Remove stopwords. 
  // the StopWordsRemover component returns a new DataFrame with  
  // new column called "filteredWords". "filteredWords" is generated  
  // by removing the stopwords from the content of column "words"  
  StopWordsRemover remover = new StopWordsRemover() 
     .setInputCol("words") 
     .setOutputCol("filteredWords");  
   

24 



  // Map words to a features 
  // Each word in filteredWords must become a feature in a Vector object 
  // The HashingTF Transformer performs this operation. 
  // This operations is based on a hash function and can potentially  
  // map two different words to the same "feature". The number of conflicts 
  // in influenced by the value of the numFeatures parameter.   
  // The "feature" version of the words is stored in Column "rawFeatures".  
  // Each feature, for a document, contains the number of occurrences  
  // of that feature in the document (TF component of the TF-IDF measure)  
  HashingTF hashingTF = new HashingTF() 
     .setNumFeatures(1000) 
     .setInputCol("filteredWords") 
     .setOutputCol("rawFeatures");    

25 



  // Apply the IDF transformation. 
  // Update the weight associated with each feature by considering also the  
  // inverse document frequency component. The returned new column  
  // is called "features", that is the standard name for the column that  
  // contains the  predictive features used to create a classification model  
  IDF idf = new IDF() 
   .setInputCol("rawFeatures") 
   .setOutputCol("features"); 

26 



  // Create a classification model based on the logistic regression algorithm 
  // We can set the values of the parameters of the  
  // Logistic Regression algorithm using the setter methods. 
  LogisticRegression lr = new LogisticRegression() 
     .setMaxIter(10) 
     .setRegParam(0.01); 
   
  // Define the pipeline that is used to create the logistic regression 
  // model on the training data. 
  // In this case the pipeline is composed of five steps 
  // - text tokenizer 
  // - stopword removal 
  // - TF-IDF computation (performed in two steps) 
  // - Logistic regression model generation 
  Pipeline pipeline = new Pipeline() 
    .setStages(new PipelineStage[] {tokenizer, remover, hashingTF, idf, lr}); 
 

27 



  // Execute the pipeline on the training data to build the  
  // classification model 
  PipelineModel model = pipeline.fit(training); 
 
  // Now, the classification model can be used to predict the class label 
  // of new unlabeled data 
 

28 



  // ************************* 
  // Prediction  step 
  // ************************* 
  
  // Read unlabeled data 
  // For the unlabeled data only the predictive attributes are available 
  // The class label is not available and must be predicted by applying 
  // the classification model inferred during the previous phase 
  JavaRDD<String> unlabeledData=sc.textFile(inputFileTest); 

29 



  // Map each unlabeled input document of the input file to a 
 LabeledDocument JavaRDD<LabeledDocument> unlabeledRDD= 

  unlabeledData.map(record -> { 
   String[] fields = record.split(","); 
   // The content of the document is after the comma  
   String text = fields[1]; 
 
   // The class label in unknown. 
   // To create a LabeledDocument a class label value must be  
   // specified also for the  unlabeled data. I set it to -1 (an invalid 
   // value). 
    double classLabel = -1; 
 
   // Return a new LabeledDocument 
   return new LabeledDocument(classLabel, text); 
  }); 

30 



  // Create the DataFrame based on the new unlabeled data 
  Dataset<Row> unlabeled =  
   ss.createDataFrame(unlabeledRDD, LabeledDocument.class); 
 
  // Make predictions on unlabeled documents by using the  
  // Transformer.transform() method. 
  // The transform will only use the 'features' columns 
  // The returned DataFrame has the following schema (attributes) 
  // - features: vector (values of the attributes) 
  // - label: double (value of the class label) 
  // - rawPrediction: vector (nullable = true) 
  // - probability: vector (The i-th cell contains the probability that the  
  //                        current record belongs to the i-th class 
  // - prediction: double (the predicted class label) 
 
  Dataset<Row> predictions = model.transform(unlabeled); 

31 



  // Select only the text and  
  // the predicted class for each record/document 
  Dataset<Row> predictionsDF=predictions.select("text", "prediction"); 
   
  // Save the result in an HDFS file 
  JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD(); 
  predictionsRDD.saveAsTextFile(outputPath); 
  
  // Close the Spark Context object 
  sc.close(); 
 } 
} 

32 


