]
3
T V¥ Politecnico

il "':' di Torino

Data Science Lab

Scikit-learn

Classification

o

Introduction to Scikit-learn Poli D

B

Scikit-learn

Machine learning library built on NumPy, SciPy and
Matplotlib

What Scikit-learn can do

Supervised learning
Regression, classification

Unsupervised learning
Clustering

Data preprocessing

Feature extraction, feature selection, dimensionality
reduction

E

Introduction to Scikit-learn Poli

What Scikit-learn cannot do

Distributed computation on multiple computers
Only multi-core optimization
Deep learning

Use Keras and Tensorflow instead

-

Introduction to Scikit-learn Poli

Scikit learn models work with structured data

Data must be in the form of 2D Numpy arrays

Rows represent the samples

Columns represent the attributes (or features)

This table is called features matrix

shape = (3, 3)
Sample 1 1.0 5 1.5
Sample 2 1.4 10 0.3

Sample 3 5.0 8 1

-

Introduction to Scikit-learn Poli D

B

Features can be
Real values

Integer values to represent categorical data

If you have strings in your data, you first have to
convert them to integers (preprocessing)

Input data Features matrix
1.0 January 1.5 1.0 0 1.5
1.4 February 0.3 > 1.4 1 0.3

5.0 March 1 5.0 2 1

; Introduction to Scikit-learn Poli

Also missing values must be solved before
applying any model

With imputation or by removing rows

Input data Features matrix
1.0 0.5 1.5 1.0 0.5 1.5
1.4 NaN 0.3 1.4 0.5 0.3
5.0 0.5 1 5.0 0.5 1
Input data
Features matrix
1.0 0.5 1.5
1.0 0.5 1.5
1.4 NaN 0.3
5.0 0.5 1
5.0 0.5 1

-

Introduction to Scikit-learn Poli D

B

For unsupervised learning you only need the
features matrix

For supervised learning you also need a target
array to train the model
It is typically one-dimensional, with length n_samples

May be 2-dimensional for multi-output models

Features matrix Target array

shape = (n_samples, n_features) shape = (n_samples,)
1.0 5 1.5 A
1.4 10 0.3 A

5.0 8 1 B

ﬁ Introduction to Scikit-learn Poli

The target array can contain
Integer values, each corresponding to a class label

Target labels Target array
Dog 0
Dog R 0
Cat 1
Real values for regression Target array

0.4

1.8

-6.9

a

Introduction to Scikit-learn Poli D

B

Scikit-learn estimator API
All models are represented with Python classes

Their classes include

The values of the hyperparameters used to configure the
model

The values of the parameters learned after training
By convention these attributes end with an underscore

The methods to train the model and make inference

Scikit-learn models are provided with sensible
defaults for the hyperparameters

Introduction to Scikit-learn Poli

Scikit learn models follow a simple, shared
pattern

Import the model that you need to use
Build the model, setting its hyperparameters

Train model parameters on your data
Using the fit() method

Use the model to make predictions
Using the predict()/transform() methods

Sometimes fit and predict/transform are
Implemented within the same class method

d

3

Introduction to Scikit-learn Poli

B

fit(): learn model parameters from input data
E.g. train a classifier

predict(): apply model parameters to make
predictions on data

E.g. predict class labels

transform(): transform data into a different
representation

E.g. normalize test data

fit_predict(): fit model and make predictions
E.g. apply clustering to data

fit_transform(): fit model and transform data
E.g. apply PCA to transform data

@ Cassification

Poli

B

Classification:

Given a 2D features matrix X

X.shape = (n_samples, n_features)

The task consists of assigning a class label y pred to

each data sample

y_pred.shape = (n_samples)

1.0

1.5

1.4

10

0.3

y_pred

12

ﬁ Classification Poli

By following the estimator API pattern:

Import a model

from sklearn.tree import DecisionTreeClassifier

Build model object

clf = DecisionTreeClassifier()

13

P Classification Poli

Important decision tree hyperparameters:

from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(max_depth = 10,

min_impurity_decrease=0.01)

Hyperparameters:

max_depth: maximum tree height

Default = None
min impurity decrease: split nodes only if impurity
decrease above threshold

Default = 0.0

14

@ Cassification

Poli

B

Train model with ground-truth labels

In [1]: | clf.fit(X_train, y_train)

This operation builds the decision tree structure

X train is the 2D Numpy array with input features (features

matrix)

y train is a 1D array with ground-truth labels

6.1 3.1 2
1.8 12 0.15
X_train

y_train

15

P Classification

Poli

B

Predict class labels for new data

In [1]:

Out[1]:

This operation shows the capability of classifiers to
make predictions for unseen data

y _pred = clf.predict(X_ test)

[3) 1) 1) 1) 2) 2) e]

1.0 5 1.5
1.4 10 0.3
X_test

y_pred

“ Take a look at all the other models in the scikit-
learn documentation

https://scikit-learn.org/stable/auto_examples/classification/plot classifier comparison.html
. ot o
.
. .
b .7“

llﬁlnw_l
o Wl
i 4\ A ! i i } '

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

ﬁ Classification PoliTo DB

G

To choose the most appropriate machine learning

model for your data you have to evaluate its
performance

Evaluation can be performed according to a
metric (scoring function)

E.g. accuracy, precision, recall

18

? Classification PoliTo DB

G

The data that you have in a dataset is only a
sample extracted from the distribution of real
world data

Data distribution Dataset

O - O

19

P Classification PoliTo DBG

If you choose the best model for your dataset, it
may not perform so well for new data

This risk is called overfitting

Data distribution Dataset

O - O

Training l l Evaluation

Model

20

? Classification PoliTo DB

G

To avoid overfitting evaluation must be performed
on data that is not used for training the model

Divide your dataset into training and test set to
simulate two different samples in the data distribution

Data distribution Dataset

O

v

Training Evaluation

Model

21

P Classification PoliTo DBG

This technique is called hold-out
Training set is typically 70/907% of your data

Data distribution Dataset

O

v

Test set

Training set

22

P Classification

PoliTo DBG

Hold-out with Scikit-learn

from sklearn.model selection import train_test split

X_train, X_test, y _train, y test = train test split(X, y, test_size=0.2)

Default test_set size is 0.25 (25%)

Dataset

Training set
X_train, y_train

Test set
X test, y test

23

/‘ Classification PoliTo DB

G

Evaluation = compare the following two vectors

y test (Y): the expected result (ground truth)
y test pred (¥): the prediction made by your model

Main evaluation metrics for classification:
Accuracy: 7% of correct samples

Precision(c): % of correct samples among those predicted
with class c

Recall(c); % of correct samples among those that belong
to class c in ground truth

F, score(c): harmonic mean between precision and recall

P Classification PoliTo DBG

Evaluation metrics with Scikit-learn

With precision_score(), recall score(), fl_score(), ..

Or, precision_recall fscore support()

Returns those metrics together

from sklearn.metrics import accuracy_score,

precision_recall_ fscore_support

acc = accuracy_score(y_test, y test pred)

p, r, fl, s = precision recall fscore support(y_test, y test pred)

25

P Classification

Poli D

-

B

p) PJ -Fl) S

= precision_recall_fscore_support(y_test, y_test_pred)

p, r, f1, s are 1D Numpy arrays with the scores
computed separately for each class

Example
classO class1 class 2
p= 0.99 0.99 05
r= 0.77 0.97 0.99

many samples of class
2 are recognized, but
model is not precise
with this class

26

P Classification PoliTo DBG

-

Macro average scores vs Weighted average scores

p, r, fl, s = precision recall fscore support(y_test, y_test_pred,
average=‘macro’)

Macro average fl:

macro_f1 = fl.mean()

Macro average gives the same importance to all classes,
even if they are unbalanced

If a class with few elements gets a low f1, the macro-averaged
score is affected with the same weight as another with more
samples

27

P Classification PoliTo DBG

Weighted average scores

p, r, fl1, s = precision recall fscore support(y_test, y test pred,

average = ‘weighted’)

Weighted average scores are by assigning each score
a different weight, based on class cardinality

Classes with higher cardinality have higher impact
on these metrics

28

ﬁ Classification PoliTo DBG

Confusion matrix

Useful tool when you want to inspect with more details
the classification results

In [1]: | from sklearn.metrics import confusion_matrix

conf_mat = confusion _matrix(y_test, y test pred)

print(conf_mat)

predicted
O 1 2
Out[1]: — o [[45, o, 1],
21 [eo, 43, o],
(@)
©2 e, 3, 42]]

29

ﬁ Notebook Examples

“ 4a-Scikitlearn-
Classification.ipynb

1. Classification and hold
out

ﬁ Cross-validation Poli DB

Divide your dataset into k partitions

At each iteration select a partition to be used as
test set and the others will be the training set

k=3 partitions

iteration 1 test

iteration 2 test

iteration 3 test

ﬁ Cross-validation Poli DB

G

At each iteration a different model is trained

After training a model compute a scoring metric
to the predictions for the test set

test

test

test

~—* modell — score (e.g. accuracy)

—» model2 —» score

—» model3 -—» score

32

p Cross-validation PoliTo D‘\B,\G

“ At the end you can compute statistics on the
obtained scores

model 1 — score (e.g. accuracy)

\

. average(score),
std(score)

model2 —» score

model 3 —» score /

33

ﬁ Cross-validation Poli

Method 1: iterate across partitions

from sklearn.model_selection import KFold

K-Fold with 5 splits
kfold = KFold(n_splits=5, shuffle=True)

for train_indices, test_indices in kfold.split(X, y):

. executed 5 times, 1 for each k-fold iteration ...

Shuffle specifies to shuffle data before creating
the k partitions (default IS False)

34

P Cross-validation Poli DBg

Method 1: iterate across partitions

for train_indices, test_indices in kfold.split(X, y):

. executed 5 times, 1 for each k-fold iteration ...

kfold.split() returns at each iteration a tuple with
two arrays:

train_indices: array of the indices (row number) of
the training samples

test indices: array of the indices of the test samples

35

P Cross-validation Poli

Method 1: iterate across partitions

for train_indices, test_indices in kfold.split(X, y):
train model on X[train_indices], y[train_indices]

test model on X[test_indices]

compute an evaluation score for this partition

At each iteration you can use fancy indexing to
select the samples from X and y

Then you can train a model and compute its
performances on the test set

36

P Cross-validation Poli

Method 2: use cross val score()

from sklearn.model selection import cross_val score

clf

DecisionTreeClassifier()

acc

cross_val score(clf, X, y, cv=5, scoring="'accuracy')

Parameters:

clf = the model that you want to be trained

X, y = your dataset, where cross-validation will be
performed

Important: this method does not shuffle data
Manually shuffle them when necessary (suggested)

37

P Cross-validation Poli

Method 2: use cross val score()

from sklearn.model selection import cross_val score

clf

DecisionTreeClassifier()

acc

cross_val score(clf, X, y, cv=5, scoring="'accuracy')

Parameters:

cv = number of partitions for cross-validation
scoring = scoring function for the evaluation

E.g. f1_macro’, f1_micro’, ‘accuracy’, ‘precision_macro’

38

P Cross-validation Poli

-
Method 2: use cross_val_score()
In [1]: | cross val score(clf, X, y, cv=3, scoring='accuracy"')
out[1]: array([0.85, 0.86, 0.833])
Return value: (Numpy array)

model1 —> score (e.g. accuracy) > score 1

model 2 — score (e.g.accuracy) > score 2

model 3 — score (e.g. accuracy) > score 3

39

P Cross-validation Poli DBg

Method 3: use cross val predict()

from sklearn.model selection import cross_val predict

y _pred = cross_val predict(clf, X, y, cv=3)

This method returns a Numpy array with the

predictions of the cv models trained during cross
validation

Data is not shuffled

40

P Cross-validation Poli

Method 3: use cross_val_predict()

from sklearn.model selection import cross val predict

y _pred = cross_val predict(clf, X, y, cv=3)

Test set predictions y_pred (Numpy array)

modell — —

model 2 —» —>

model3 — —

41

ﬁ Cross-validation Poli

Method 3: use cross_val_predict()

Finally you can evaluate the predictions

acc = accuracy score(y_test, y test pred)

y_pred (Numpy array) y_test (actual values)

A
v

42

P Cross-validation Poli DBg

-

Difference between method 2 and method 3

y_pred (Numpy array) y_test (actual values)

< > —» scorel \
method 2 < > ——» score2 ———» avg
- 5 —» score 3 /
y_pred (Numpy array) y_test (actual values) These values

are different!

method 3 ‘ ’ > score

43

P Notebook Examples

“ 4a-Scikitlearn-
Classification.ipynb

2. Cross validation

