

Data Science Lab

Scikit-learn

Classification

Andrea Pasini Flavio Giobergia Elena Baralis

DataBase and Data Mining Group

- Scikit-learn
 - Machine learning library built on NumPy, SciPy and Matplotlib
- What Scikit-learn can do
 - Supervised learning
 - Regression, classification
 - Unsupervised learning
 - Clustering
 - Data preprocessing
 - Feature extraction, feature selection, dimensionality reduction

- What Scikit-learn cannot do
 - Distributed computation on multiple computers
 - Only multi-core optimization
 - Deep learning
 - Use Keras and Tensorflow instead

- Scikit learn models work with structured data
 - Data must be in the form of 2D Numpy arrays
 - Rows represent the samples
 - Columns represent the attributes (or features)

Price

This table is called features matrix

shape =
$$(3, 3)$$

Sample 1
Sample 2
Sample 3

1.0	5	1.5
1.4	10	0.3
5.0	8	1

Quantity

Liters

- Features can be
 - Real values
 - Integer values to represent categorical data
- If you have strings in your data, you first have to convert them to integers (preprocessing)

Input data

1.0	January	1.5
1.4	February	0.3
5.0	March	1

Features matrix

1.0	0	1.5
1.4	1	0.3
5.0	2	1

- Also missing values must be solved before applying any model
 - With imputation or by removing rows

Input data

1.0	0.5	1.5
1.4	NaN	0.3
5.0	0.5	1

Features matrix

1.0	0.5	1.5
1.4	0.5	0.3
5.0	0.5	1

Input data

1.0	0.5	1.5
1.4	NaN	0.3
5.0	0.5	1

Features matrix

1.0	0.5	1.5
5.0	0.5	1

- For unsupervised learning you only need the features matrix
- For supervised learning you also need a target array to train the model
 - It is typically one-dimensional, with length n_samples
 - May be 2-dimensional for multi-output models

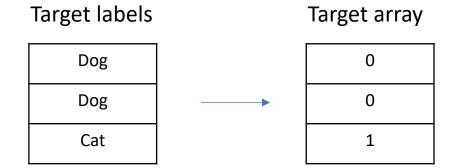
Features matrix shape = (n_samples, n_features)

1.0	5	1.5
1.4	10	0.3
5.0	8	1

Target array
shape = (n_samples,)

А	
А	
В	

- The target array can contain
 - Integer values, each corresponding to a class label



Real values for regression

Target array

0.4
1.8
-6.9

- Scikit-learn estimator API
 - All models are represented with Python classes
 - Their classes include
 - The values of the hyperparameters used to configure the model
 - The values of the parameters learned after training
 - By convention these attributes end with an underscore
 - The methods to train the model and make inference
 - Scikit-learn models are provided with sensible defaults for the hyperparameters

- Scikit learn models follow a simple, shared pattern
 - 1. Import the model that you need to use
 - 2. **Build** the model, setting its hyperparameters
 - Train model parameters on your data
 - Using the fit() method
 - 4. Use the model to make predictions
 - Using the predict()/transform() methods
- Sometimes fit and predict/transform are implemented within the same class method

- fit(): learn model parameters from input data
 - E.g. train a classifier
- predict(): apply model parameters to make predictions on data
 - E.g. predict class labels
- transform(): transform data into a different representation
 - E.g. normalize test data
- fit_predict(): fit model and make predictions
 - E.g. apply clustering to data
- fit_transform(): fit model and transform data
 - E.g. apply PCA to transform data

Classification:

- Given a 2D features matrix X
 - X.shape = (n_samples, n_features)
- The task consists of assigning a class label y_pred to each data sample
 - y pred.shape = (n samples)

1.0	5	1.5
1.4	10	0.3

A B B

y_pred

By following the estimator API pattern:

Import a model

from sklearn.tree import DecisionTreeClassifier

Build model object

clf = DecisionTreeClassifier()

Important decision tree hyperparameters:

- Hyperparameters:
 - max_depth: maximum tree height
 - Default = None
 - min_impurity_decrease: split nodes only if impurity decrease above threshold
 - Default = 0.0

Train model with ground-truth labels

- This operation builds the decision tree structure
 - X_train is the 2D Numpy array with input features (features matrix)
 - y train is a 1D array with ground-truth labels

6.1	3.1	2
1.8	12	0.15

X_train

0
2
1

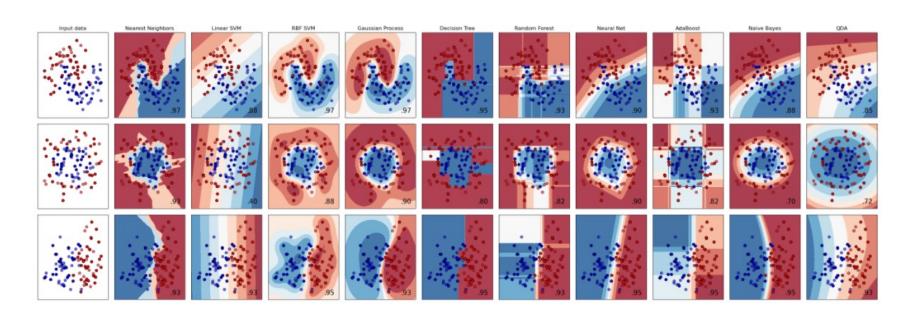
y_train

Predict class labels for new data

 This operation shows the capability of classifiers to make predictions for unseen data

1.0	5	1.5		1
1.4	10	0.3		3
				3
	X_test		•	y_pred

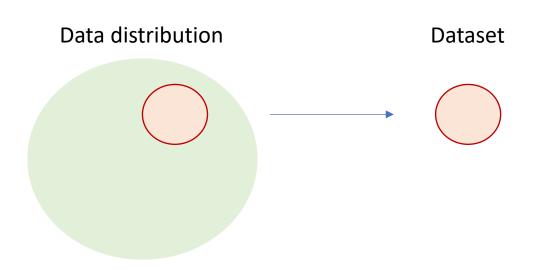
- Take a look at all the other models in the scikitlearn documentation
 - https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html



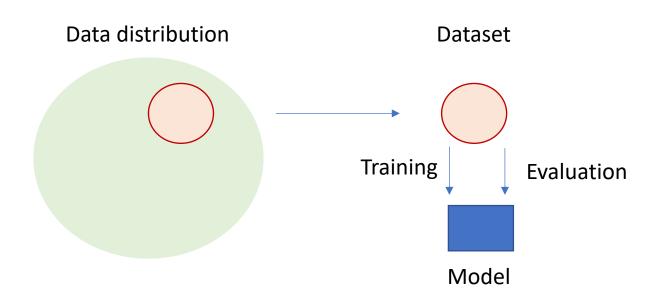
To choose the most appropriate machine learning model for your data you have to evaluate its performance

- Evaluation can be performed according to a metric (scoring function)
 - E.g. accuracy, precision, recall

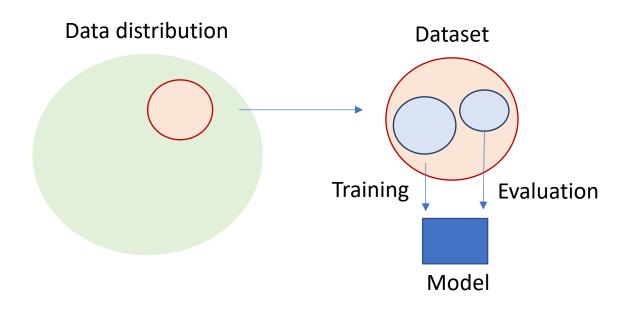
The data that you have in a dataset is only a sample extracted from the distribution of real world data



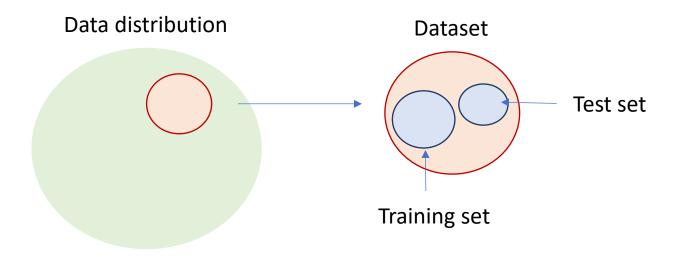
- If you choose the best model for your dataset, it may not perform so well for new data
 - This risk is called overfitting



- To avoid overfitting evaluation must be performed on data that is not used for training the model
 - Divide your dataset into training and test set to simulate two different samples in the data distribution



- This technique is called hold-out
 - Training set is typically 70/90% of your data

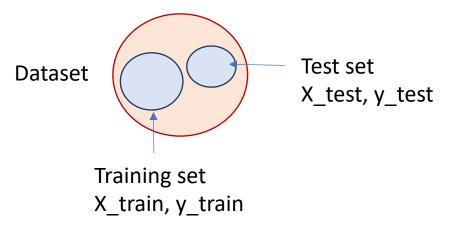


Hold-out with Scikit-learn

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

Default test_set size is 0.25 (25%)



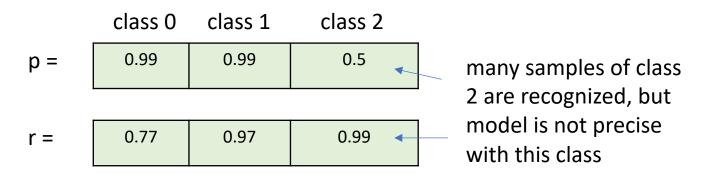
- Evaluation = compare the following two vectors
 - y_test (y): the expected result (ground truth)
 - y test pred (\hat{y}) : the prediction made by your model

- Main evaluation metrics for classification:
 - Accuracy: % of correct samples
 - Precision(c): % of correct samples among those predicted with class c
 - Recall(c); % of correct samples among those that belong to class c in ground truth
 - F₁ score(c): harmonic mean between precision and recall

- Evaluation metrics with Scikit-learn
 - With precision_score(), recall_score(), f1_score(), ...
 - Or, precision_recall_fscore_support()
 - Returns those metrics together


```
p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)
```

- p, r, f1, s are 1D Numpy arrays with the scores computed separately for each class
 - Example



Macro average scores vs Weighted average scores

```
p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred, average='macro')
```

Macro average f1:

```
macro_f1 = f1.mean()
```

- Macro average gives the same importance to all classes, even if they are unbalanced
 - If a class with few elements gets a low f1, the macro-averaged score is affected with the same weight as another with more samples

Weighted average scores

- Weighted average scores are by assigning each score a different weight, based on class cardinality
- Classes with higher cardinality have higher impact on these metrics

Confusion matrix

 Useful tool when you want to inspect with more details the classification results

```
In [1]: from sklearn.metrics import confusion_matrix

conf_mat = confusion_matrix(y_test, y_test_pred)
 print(conf_mat)
```

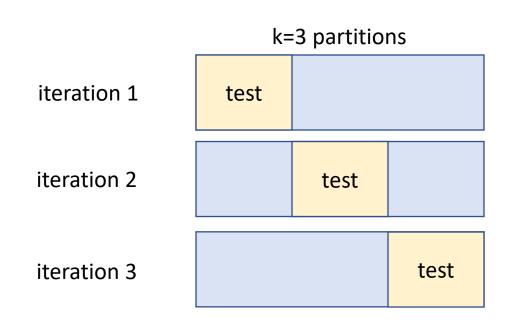
```
predicted
0 1 2

Out[1]: 0 [[45, 0, 1],
1 [0, 43, 0],
2 [0, 3, 42]]
```

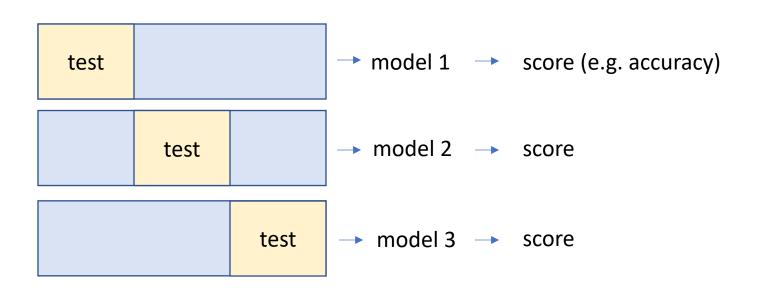

Notebook Examples

- 4a-Scikitlearn-Classification.ipynb
 - 1. Classification and hold out

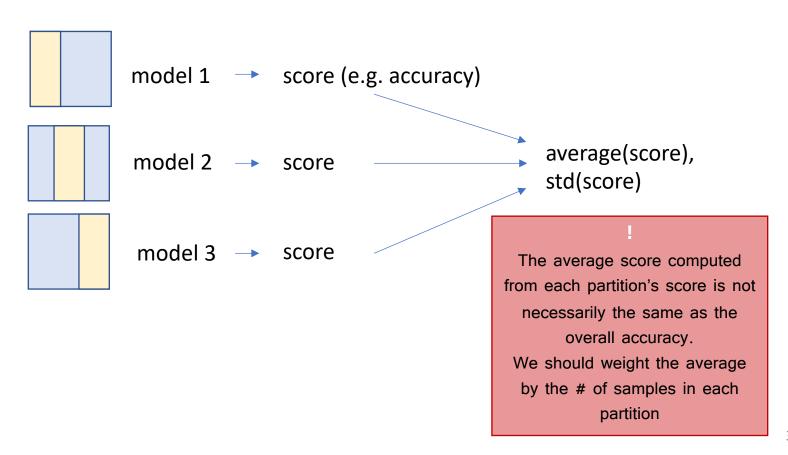
- Divide your dataset into k partitions
- At each iteration select a partition to be used as test set and the others will be the training set



- At each iteration a different model is trained
- After training a model compute a scoring metric to the predictions for the test set



At the end you can compute statistics on the obtained scores



Method 1: iterate across partitions

 Shuffle specifies to shuffle data before creating the k partitions (default is False)

Method 1: iterate across partitions

- kfold.split() returns at each iteration a tuple with two arrays:
 - train_indices: array of the indices (row number) of the training samples
 - test_indices: array of the indices of the test samples

Method 1: iterate across partitions

```
for train_indices, test_indices in kfold.split(X, y):
    train model on X[train_indices], y[train_indices]
    test model on X[test_indices]
    compute an evaluation score for this partition
```

- At each iteration you can use fancy indexing to select the samples from X and y
- Then you can train a model and compute its performances on the test set

Method 2: use cross val score()

```
from sklearn.model_selection import cross_val_score

clf = DecisionTreeClassifier()
acc = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
```

- Parameters:
 - clf = the model that you want to be trained
 - X, y = your dataset, where cross-validation will be performed
- Important: this method does not shuffle data
 - Manually shuffle them when necessary (suggested)

Method 2: use cross_val_score()

```
from sklearn.model_selection import cross_val_score

clf = DecisionTreeClassifier()
acc = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
```

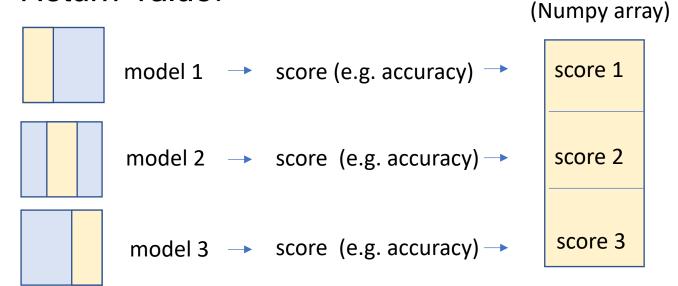
Parameters:

- cv = number of partitions for cross-validation
- scoring = scoring function for the evaluation
 - E.g. 'f1_macro', 'f1_micro', 'accuracy', 'precision_macro'

Method 2: use cross_val_score()

```
In [1]: cross_val_score(clf, X, y, cv=3, scoring='accuracy')
Out[1]: array([0.85, 0.86, 0.833])
```

Return value:



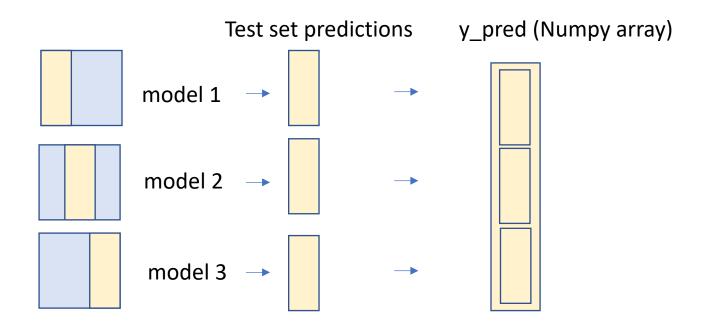
Method 3: use cross_val_predict()

```
from sklearn.model_selection import cross_val_predict
y_pred = cross_val_predict(clf, X, y, cv=3)
```

- This method returns a Numpy array with the predictions of the cv models trained during cross validation
- Data is not shuffled

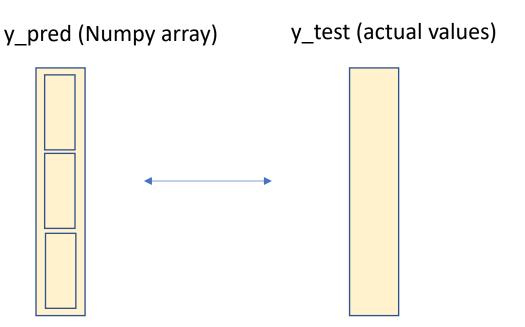
Method 3: use cross_val_predict()

```
from sklearn.model_selection import cross_val_predict
y_pred = cross_val_predict(clf, X, y, cv=3)
```

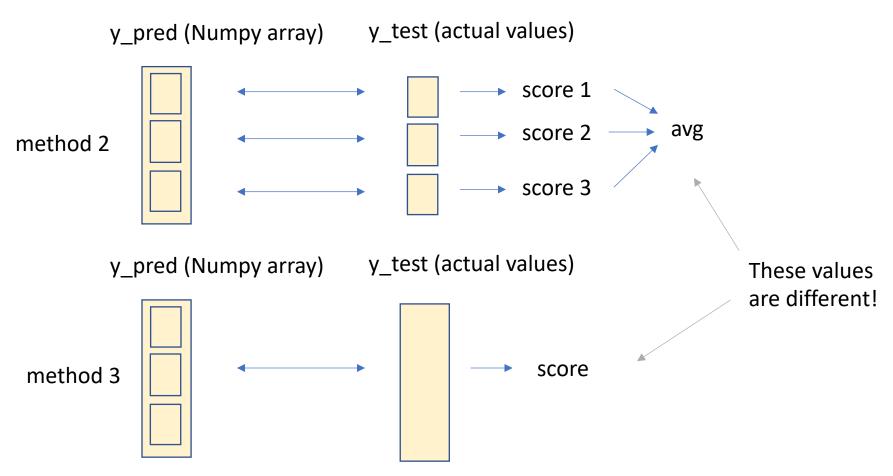


- Method 3: use cross_val_predict()
 - Finally you can evaluate the predictions

```
acc = accuracy_score(y_test, y_test_pred)
```



Difference between method 2 and method 3



Notebook Examples

- 4a-Scikitlearn-Classification.ipynb
 - 2. Cross validation

