Data mining fundamentals

Elena Baralis

Politecnico di Torino

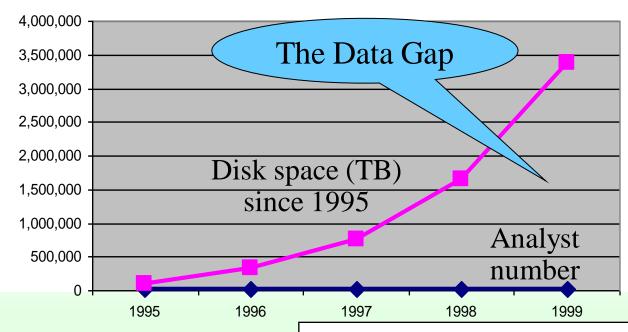
Data analysis

- Most companies own huge databases containing
 - operational data
 - textual documents
 - experiment results

 These databases are a potential source of useful information

Data analysis

- Information is "hidden" in huge datasets
 - not immediately evident
 - human analysts need a large amount of time for the analysis
 - most data is never analyzed at all

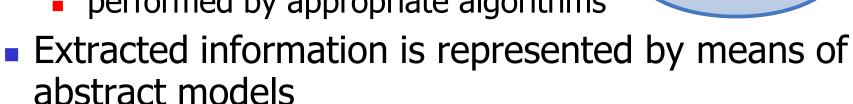


Data mining

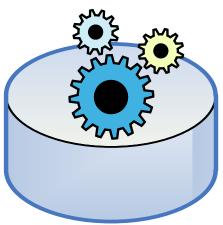
- Non trivial extraction of
 - implicit
 - previously unknown
 - potentially useful

information from available data

- Extraction is automatic
 - performed by appropriate algorithms

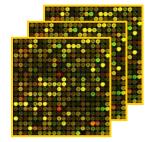


denoted as pattern



Example: biological data

- Microarray
 - expression level of genes in a cellular tissue
 - various types (mRNA, DNA)



- Patient clinical records
 - personal and demographic data
 - exam results

CLID	PATIENT ID	shx013: 49A34	shv060: 45A9	shq077: 52A28	shx009: 4A34	shx014: 61A31	shq082: 99A6	shq083: 46A15	shx008: 41A31
IMAGE:74	ISG20 in	-1.02	-2.34	1.44	0.57	-0.13	0.12	0.34	-0.51
IMAGE:76	TNFSF13	-0.52	-4.06	-0.29	0.71	1.03	-0.67	0.22	-0.09
IMAGE:36	LOC93343	-0.25	-4.08	0.06	0.13	0.08	0.06	-0.08	-0.05
IMAGE:23	ITGA4 in	-1.375	-1.605	0.155	-0.015	0.035	-0.035	0.505	-0.865

- Textual data in public collections
 - heterogeneous formats, different objectives
 - scientific literature (PUBMed)
 - ontologies (Gene Ontology)

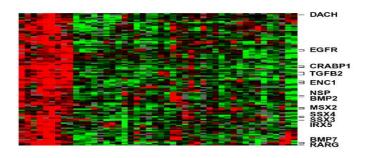
Biological analysis objectives

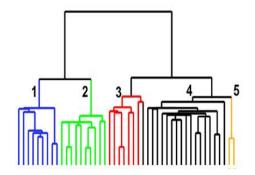
- Clinical analysis
 - detecting the causes of a pathology
 - monitoring the effect of a therapy
 - ⇒ diagnosis improvement and definition of new specific therapies
- Bio-discovery
 - gene network discovery
 - analysis of multifactorial genetic pathologies
- Pharmacogenesis
 - lab design of new drugs for genic therapies

How can data mining contribute?

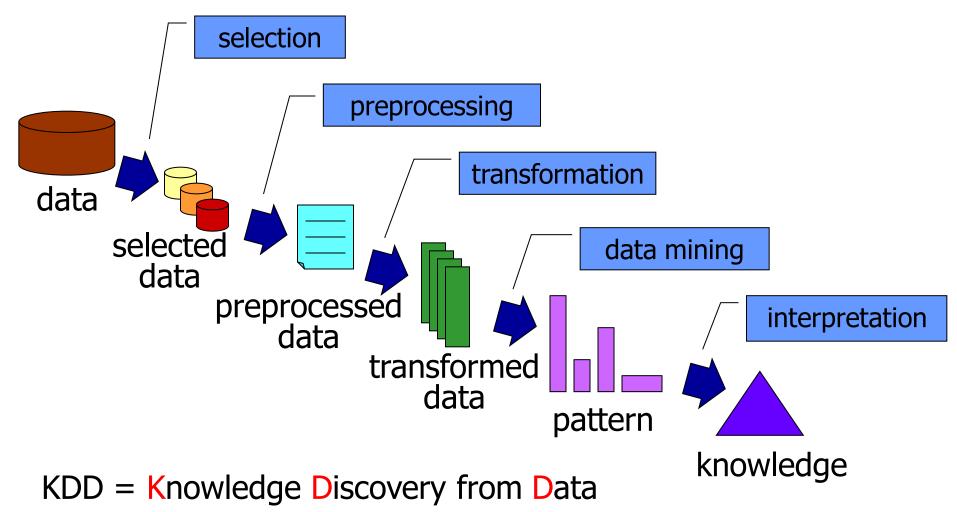
Data mining contributions

- Pathology diagnosis
 - classification
- Selecting genes involved in a specific pathology
 - feature selection
 - clustering
- Grouping genes with similar functional behavior
 - clustering
- Multifactorial pathologies analysis
 - association rules
- Detecting chemical components appropriate for specific therapies
 - classification



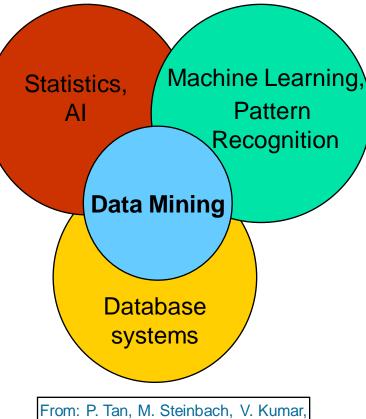


Knowledge Discovery Process



Data mining origins

- Draws from
 - statistics, artificial intelligence (AI)
 - pattern recognition, machine learning
 - database systems
- Traditional techniques are not appropriate because of
 - significant data volume
 - large data dimensionality
 - heterogeneous and distributed nature of data

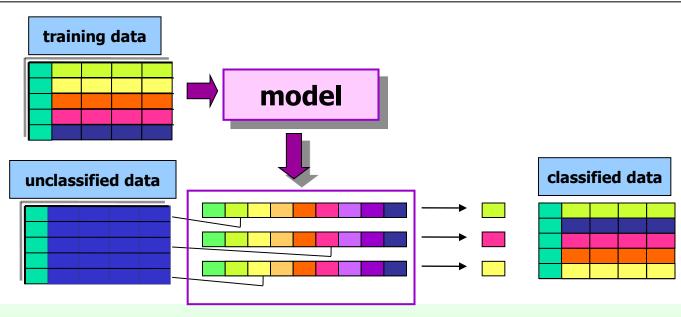


Analysis techniques

- Descriptive methods
 - Extract interpretable models describing data
 - Example: client segmentation
- Predictive methods
 - Exploit some known variables to predict unknown or future values of (other) variables
 - Example: "spam" email detection

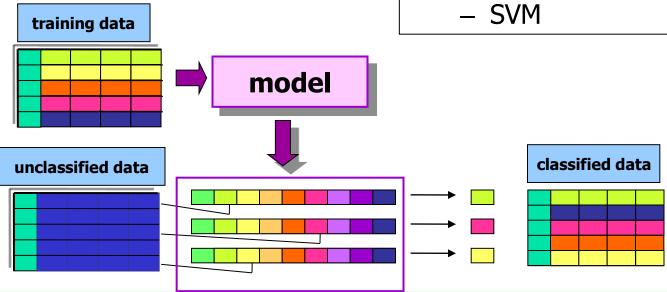
Classification

- Objectives
 - prediction of a class label
 - definition of an interpretable model of a given phenomenon



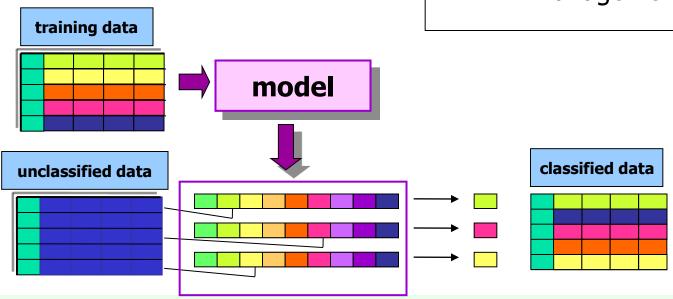
Approaches

- decision trees
- bayesian classification
- classification rules
- neural networks
- k-nearest neighbours



Requirements

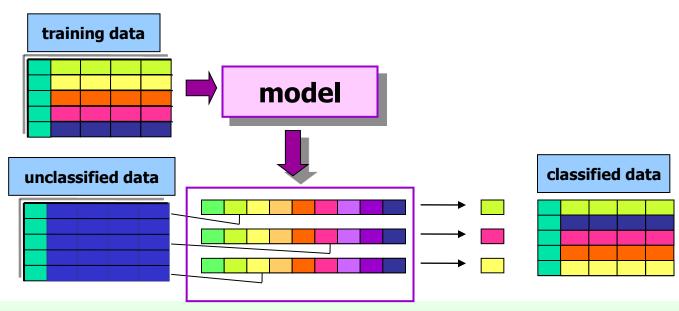
- accuracy
- interpretability
- scalability
- noise and outlier management



Classification

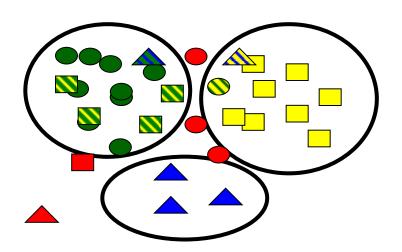
Applications

- detection of customer propension to leave a company (churn or attrition)
- fraud detection
- classification of different pathology types
- ...



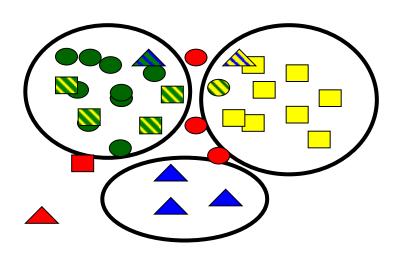
Clustering

- Objectives
 - detecting groups of similar data objects
 - identifying exceptions and outliers



Clustering

- Approaches
 - partitional (K-means)
 - hierarchical
 - density-based (DBSCAN)
 - SOM



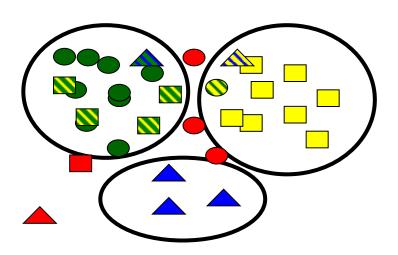
Requirements

- scalability
- management of
 - noise and outliers
 - large dimensionality
- interpretability

Applications

- customer segmentation
- clustering of documents containing similar information
- grouping genes with similar expression pattern

...



Association rules

- Objective
 - extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

- Association rule diapers ⇒ beer
 - 2% of transactions contains both items
 - 30% of transactions containing diapers also contain beer

Association rules

- Applications
 - market basket analysis
 - cross-selling
 - shop layout or catalogue design

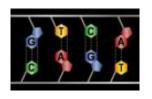
Tickets at a supermarket counter

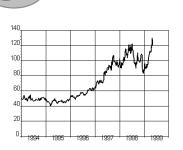
TID	Items
1	Bread, Coca Cola, Milk
2	Beer, Bread
3	Beer, Coca Cola, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coca Cola, Diapers, Milk

- Association rule diapers ⇒ beer
 - 2% of transactions contains both items
 - 30% of transactions containing diapers also contain beer

Other data mining techniques

- Sequence mining
 - ordering criteria on analyzed data are taken into account
 - example: motif detection in proteins
- Time series and geospatial data
 - temporal and spatial information are considered
 - example: sensor network data
- Regression
 - prediction of a continuous value
 - example: prediction of stock quotes
- Outlier detection
 - example: intrusion detection in network traffic analysis





Open issues

- Scalability to huge data volumes
- Data dimensionality
- Complex data structures, heterogeneous data formats
- Data quality
- Privacy preservation
- Streaming data

