Data mining fundamentals

Data Base and Data Mining Group of Politecnico di Torino

Elena Baralis
Politecnico di Torino



Y C,g,.(.,,;
S TR 450
o Nl
<8 4

= Most companies own huge databases
containing
= operational data
« textual documents
= experiment results

= These databases are a potential
source of useful information
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= Information is “hidden” in huge datasets
= nhot immediately evident
= human analysts need a large amount of time for the

analysis
« most data /s never analyzed at all
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From R. Grossman, C. Kamath, V. Kumar, “Data
Mining for Scientific and Engineering Applications”




¢ Data mining

. Non trivial extraction of
« implicit
= previously unknown #
= potentially useful

information from available data l '

= Extraction is automatic
= performed by appropriate algorithms

= Extracted information is represented by means of
abstract models

= denoted as pattern
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(=4 Example: biological data

= Microarray
= expression level of genes in a cellular tissue
= various types (MRNA, DNA)

= Patient clinical records
= personal and demographic data
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= [extual data in public collections
= heterogeneous formats, different objectives[
=« scientific literature (PUBMed) -
= ontologies (Gene Ontology) Publ\[med

the Gene Ontology
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B|olog|cal analysis objectives

= CI|n|caI analysis
= detecting the causes of a pathology
= Mmonitoring the effect of a therapy

= diagnosis improvement and definition of new speC|f|c
therapies

= Bio-discovery
= gene network discovery
= analysis of multifactorial genetic pathologies

= Pharmacogenesis
= lab design of new drugs for genic therapies g i

How can data mining contribute?
DSG :
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. Data mining contributions

= Pathology diagnosis
= classification
= Selecting genes involved in a
specific pathology
= feature selection
= Clustering

= Grouping genes with similar
functional behavior

= clustering S . =l
= Multifactorial pathologies analysis {w

= association rules

= Detecting chemical components appropriate for specific
therapies
= classification

DSG :




(=4} Knowledge Discovery Process
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Data mining origins

= Draws from
= statistics, artificial intelligence (AI)

= pattern recognition, machine
learning

= database systems

= Traditional techniques are not
appropriate because of
= significant data volume
= large data dimensionality

= heterogeneous and distributed
nature of data
From: P. Tan, M. Steinbach, V. Kumar,

B “Introduction to Data Mining”
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Data Mining

Database
systems
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W : Analysis techniques

= Descriptive methods
» Extract interpretable models describing data
= Example: client segmentation

= Predictive methods

= Exploit some known variables to predict
unknown or future values of (other) variables

= Example: "spam” email detection
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4 Classification

= Objectives
= prediction of a class label

= definition of an interpretable model of a given
phenomenon

training data
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.} Classification

training data

unclassified data

« Approaches
— decision trees
— bayesian classification
— classification rules
— neural networks
— k-nearest neighbours
— SVM
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training data

unclassified data

: Classification

« Requirements
— accuracy
— interpretability
— scalability

— noise and outlier
management
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= Applications

= detection of customer propension to leave a company
(churn or attrition)

= fraud detection
=« classification of different pathology types

training data
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= Objectives
= detecting groups of similar data objects
= identifying exceptions and outliers
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Approaches

— partitional (K-means)

— hierarchical

— density-based (DBSCAN)
— SOM

« Requirements
— scalability
— management of
— noise and outliers
— large dimensionality

— interpretability
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= Applications
= customer segmentation
= Clustering of documents containing similar information
= grouping genes with similar expression pattern
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= Objective

= extraction of frequent correlations or pattern from a
transactional database

Tickets at a supermarket
counter

TID

Items

1

Bread, Coke, Milk

Beer, Bread

Beer, Coke, Diapers, Milk

Beer, Bread, Diapers, Milk

2
3
4
5

Coke, Diapers, Milk

= Association rule

diapers = beer

= 2% of transactions contains
both items

= 30% of transactions
containing diapers also
contain beer
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Association rules

= Applications

= Mmarket basket analysis
= cross-selling
= shop layout or catalogue design

Tickets at a supermarket
counter

TID

Items

1

Bread, Coca Cola, Milk

Beer, Bread

Beer, Coca Cola, Diapers, Milk

Beer, Bread, Diapers, Milk

2
3
4
5

Coca Cola, Diapers, Milk

= Association rule

diapers = beer

= 2% of transactions contains
both items

= 30% of transactions
containing diapers also
contain beer




{4+ Other data mining techniques

= Sequence mining

= ordering criteria on analyzed data are taken into
account

= example: motif detection in proteins
= Time series and geospatial data
= temporal and spatial information are considered
= example: sensor network data
= Regression
= prediction of a continuous value
= example: prediction of stock quotes

= Outlier detection : W
= example: intrusion detection in network traffic T
analysis :
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Scalability to hugEdata volumes

Data dimensionality

Complex data structures, heterogeneous data
formats

Data quality
Privacy preservation
Streaming data
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