Free Spoken Digit Dataset Classification Problem

Flavio Giobergia
Politecnico di Torino
sXXXXXX
flavio.giobergia@polito.it

Abstract—In this report we introduce a possible approach to
the Free Spoken Digit Dataset classification problem. In particular,
the proposed approach consists in extracting the spectrogram of
each audio signal and split it into a specific number of chunks. For
each chunk, various summary statistics are computed and used
as input for two classification models. The proposed approach
outperforms a naive baseline defined for the problem and obtains
overall satisfactory results.

I. PROBLEM OVERVIEW

The proposed competition is a classification problem on the
Free Spoken Digit Dataset, a collection of audio recordings of
utterances of digits (‘“zero” to “nine”) from different people.
The goal of this competition is to correctly identify the digit
being uttered in each recording. The dataset is divided into
two parts:

o a development set, containing 1,500 recordings for which
a label
e an evaluation set, comprised of 500 recordings.

We will need to use the development set to build a classi-
fication model to correctly label the points in the evaluation
set.

We can make some considerations based on the develop-
ment set. First, the problem is well-balanced: for each of the 10
classes (0 to 9), there are 150 recordings. Second, the sample
width is of 16 bits for all files. Third, all recordings have been
sampled at a frequency of 8 kHz. In telephony, the usable
voice-frequency band ranges from approximately 300 Hz to
3400 Hz [1]. Due to Nyquist-Shannon sampling theorem, 8
kHz is therefore a reasonable sampling frequency for these
recordings (though only by a small margin).

While all signals have been sampled at the same rate,
recordings durations differ. Figure 1 shows how such durations
are distributed. There are some outliers that have a length
that significantly differs from the mean duration (0.4 seconds).
Upon a manual inspection, those signals contain some silence
following the utterance and should not pose any particular
problem. However, since the entries have varying lengths, we
needed to devise some approach to extract the same number of
features from all data points (since most classification models
require a fixed number of features).

To get a better understanding of the type of data at hand,
we can inspect some signals visually, both in time and in
frequency domains. These two domains introduce useful and
complementary information on each signal. Figure 2 shows
one signal in the time domain. We can immediately notice
that there can be some pauses before and/or after the utterance.

0.5 1.0 1.5 2.0
Duration (s)

Fig. 1: Distribution of the durations of the recordings

5000

-5000

Amplitude

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

Fig. 2: Representation of a recording in the time domain

Also, as expected, the amplitudes are bound in the range of
values [-32,768, 32,767] (16 bits per sample).

Figures 3a and 3b show the signal in the frequency domain
(without a with a decibel scale). From this, we can observe that
some frequencies carry more energy than others. The linear
scale shows a mostly flat plot with only a limited number
of high-energy frequencies. The decibel scale, on the other
hand, is a logarithmic scale and highlights a wider range of
involved frequencies. Since the human perception of sounds is
logarithmic in nature (rather than linear) [2], we can consider
the dB scale to be a more meaningful representation than
the linear one. We will adopt this representation during the
preprocessing phase.

II. PROPOSED APPROACH

A. Data preprocessing

We have seen that both time and frequency domains contain
useful information regarding the recordings. We can leverage
both by using the spectrogram of each signal. An example of a
spectrogram of a signal is shown in Figure 4. A spectrogram
can be seen as an N x M matrix (/N frequency bins and
M time bins). We can divide this matrix into n, rows and
n~ columns. This produces n, - n, blocks. For each block,
then, we can compute some summary statistics (in this case,
mean and standard deviation). Figure 5 exemplifies how these
features are extracted from a single block.

=
400
@
C
)
2200
2
'c
3 0 -
= 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)
(a) Linear scale
Z 50
Z
g 25
2
c 0
[e)}
©
= 25
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)
(b) dB scale

Fig. 3: Magnitude of a recording (linear and log scales)

40
3000
£
€ 2000 3
35
&1500
e
1000
—_— -20
0

0.1 0.2 0.3 0.4
Time (s)

o

Fig. 4: Spectrogram of a signal

j4]

£

E [|
5 P
o

8 B -

a Sty

€ M N

8 ~ —— samples |
2 nyn

M samples, n,, splits

Fig. 5: Example of the extraction of mean and standard
deviation for one of the blocks into which the spectrogram
is split. Assuming that the spectrogram is represented by an
N x M matrix and that n, = n, = 5 splits are done along
each axis

Defining our features as explained has the following bene-
fits:

e Reduction of the number of features: if we select a
number of blocks of N - M, we get the same number of
features as produced by the spectrogram. By reducing the
number of blocks, the number of features is also reduced

o Generation of a uniform number of features: if we select
a number of blocks that is not a function of N and, in
particular, of M (since M varies across signals), we can
generate the same number of features for all signals

The implication of selecting a number of features that does not
depend on M is that blocks extracted from signals of different
length will contain a different number of elements. This in turn
means that we are “squeezing” (or stretching) the signals in
time. Similar considerations would apply for the frequency
dimension if different sampling frequencies were used.

We can consider n, and n. as two hyperparameters of our
preprocessing step. Section II-C explores how we can define
meaningful values for n, and n,.

The statistics extracted from each block are representative
of a specific range of frequencies, as used at a specific moment
of the recording.

B. Model selection

The following algorithms have been tested:

e Random forest: this algorithm leverages multiple decision
trees (trained on various subsets of data and features)
to make predictions. This typically avoids the overfitting
problems of decision trees but still maintaining some
degree of interpretability. The performance of a random
forest scales with the number of estimators (up to a
certain point [3]) and can be tuned on a similar set of
parameters as a single decision trees. Random forests,
like decision trees, work on one feature at a time, so
no normaliziation is necessary. We chose to use random
forests as they have been shown to perform well on audio
signal classification problems [4]

e SVM: this model has also been shown to work well on
audio signals [5]. This algorithm applies a (possibly non-
linear) transformation to the data points and identifies the
maximum-margin hyperplane that separates the classes.
SVMs typically benefit from a normalization step.

For both classifiers, the best-working configuration of hyperpa-
rameters has been identified through a grid search, as explained
in the following section.

C. Hyperparameters tuning
There are two main sets of hyperparameters to be tuned:

e n, and n, for the preprocessing
o random forest and SVM parameters

By assuming that the two are orthogonal, we can first select
n~ and n, and then move on to the classifiers parameters.
Another simplifying assumption we can make is that n, =
n~. This helps us significantly lower the number of combina-
tions we need to consider, as we now need to try n = n, = ny

1.00

0.95

e o ©°
©® o
S wu o

macro r, score

0.75
SVM

0.70 5 10 15 20 25

n
Fig. 6: Performance of default SVM and random forest as n
varies

Model Parameter Values
Preprocessing | n=n, =mn, 2 — 46, step 4
max_depth {None, 2, 5, 10, 50}
Random forest n_estimators 100
criterion {gini, entropy}
SVM C {1, 5, 10, 50, 100, 500, 1,000}
kernel {rbf, linear, sigmoid}

TABLE I: Hyperparameters considered

configurations, instead of n,,-n. We can use an 80/20 train/test
split on the development set and run a grid search on n. To
this end, we will train a random forest and an SVM with their
default configurations and assess their performance based on
the resulting macro f; score.

After choosing a value for n, we can run a grid search!' on
both SVM and random forest, based on the hyperparameters
defined in Table I.

IIT. RESULTS

The tuning of the parameter n is summarized in Figure 6.
We can immediately see that the random forest is more stable
than SVM as n increases. Both classifiers achieve satisfactory
performance for n = 10, which we can select as a reasonable
value (larger values would affect the SVM with no meaningful
improvement for the random forest). With this value of n, we
ran the grid search for both random forest and SVM.

The best configuration for random forest was found for
{criterion=entropy, max_depth=None*} (f, score ~ 0.96),
whereas the best configuration for the SVM was found for
{C=5, kernel=rbf} (f1 score ~ 0.94). The two classifiers
achieve satisfactory and comparable results.

We trained the best performing random forest classifier and
SVM on all available development data. Then the models have
been used to label the evaluation set. The public score obtained
is of 0.972 for the random forest and of 0.988 for the SVM.

'With another 80/20 train/test split
2This implies setting no limitation on the maximum depth of the trees

Since these are the first scores obtained using the evaluation
data, there should be no overfitting and we can reasonably
assume that similar results can be obtained on the private
score.

For comparison, a naive solution has also been defined. This
solution carries out the following steps:

1) Split the signal into 20 chunks on the time dimension

2) For each chunk, extract mean and standard deviation of
the samples

3) Train a default random forest on the obtained features

This solution obtains a public score of 0.658.

IV. DISCUSSION

The proposed approach obtains results that far outperform
the naive baseline defined. It does so by leveraging both time-
and frequency-based features. We have empirically shown that
the selected classifiers perform similarly for this specific task,
achieving satisfactory results in terms of macro f; score.

The following are some aspects that might be worth con-
sidering to further improve the obtained results:

o Other feature extraction approaches may be considered.
For example, the Mel Frequency Cepstral Coefficients
(MFCC) are often used for speech recognition tasks
[6]. Other approaches may leverage an automated fea-
ture extraction from the spectrogram of the signal (e.g.
Convolutional Neural Networks). Both approaches are
promising and could result in further improvements

e Run a more thorough grid search process. Only a lim-
ited set of hyperparameters has currently been studied.
Exploring further options could result in an even better
configuration. This includes considering additional clas-
sification models

The results obtained, however, are already very promising
and there is little room for improvement. This classification
problem is indeed quite easy and the datasets available are
very limited.

REFERENCES
[1] (2019) Atis telecom glossary. ATIS. [Online]. Available:
https://glossary.atis.org/glossary/voice-frequency-vf
[2] E. B. Goldstein, Sensation and perception (3rd ed.).

Wadsworth/Thomson Learning, 1989.

[3] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, “How many trees in
a random forest?” in International workshop on machine learning and
data mining in pattern recognition. Springer, 2012, pp. 154-168.

[4] F. Saki, A. Sehgal, I. Panahi, and N. Kehtarnavaz, “Smartphone-based
real-time classification of noise signals using subband features and
random forest classifier,” in 2016 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE, 2016, pp.
2204-2208.

[5] P. Dhanalakshmi, S. Palanivel, and V. Ramalingam, “Classification of
audio signals using svm and rbfnn,” Expert Systems with Applications,
vol. 36, no. 3, Part 2, pp. 6069 — 6075, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417408004004

[6] T. Ganchev, N. Fakotakis, and G. Kokkinakis, “Comparative evaluation
of various mfcc implementations on the speaker verification task,” in
Proceedings of the SPECOM, vol. 1, no. 2005, 2005, pp. 191-194.

